【HDOJ】1597 find the nth digit】的更多相关文章

二分. #include <stdio.h> #include <math.h> int main() { int case_n; double n, tmp, l, r; int m; scanf("%d", &case_n); while (case_n--) { scanf("%lf", &n); tmp = sqrt(n+n); tmp = ceil(tmp); l = (tmp*tmp-tmp)/; r = (tmp…
find the nth digit Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 9836    Accepted Submission(s): 2881 Problem Description 假设:S1 = 1S2 = 12S3 = 123S4 = 1234.........S9 = 123456789S10 = 12345678…
[算法]DP+斜率优化 [题意]n(n≤50000)块土地,长ai宽bi,可分组购买,每组代价为max(ai)*max(bi),求最小代价. [题解] 斜率优化:http://www.cnblogs.com/ka200812/archive/2012/08/03/2621345.html 因为对于土地x和y,若满足a[x]<=a[y]&&b[x]<=b[y],则x土地可无条件包含在y土地中,所以x土地可以忽略. 于是对长度从小到大排序,第二关键字对宽度从小到大排序,处理掉可被包…
find the nth digit Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 7403    Accepted Submission(s): 2120 Problem Description 假设:S1 = 1S2 = 12S3 = 123S4 = 1234.........S9 = 123456789S10 = 12345678…
这道题目可以手工打表,也可以机器打表,千万不能暴力解,会TLE. #include <stdio.h> #define MAXNUM 1000000001 ][]; int main() { int case_n, n; int i, j; ; i<; ++i) { buf[i][] = ; buf[i][] = i; ; j<; ++j) { buf[i][j] = buf[i][j-]*i%; ]) break; buf[i][]++; } } /* for (i=0; i&l…
其实是求树上的路径间的数据第K大的题目.果断主席树 + LCA.初始流量是这条路径上的最小值.若a<=b,显然直接为s->t建立pipe可以使流量最优:否则,对[0, 10**4]二分得到boundry,使得boundry * n_edge - sum_edge <= k/b, 或者建立s->t,然后不断extend s->t. /* 4729 */ #include <iostream> #include <sstream> #include <…
DP/四边形不等式 裸题环形石子合并…… 拆环为链即可 //HDOJ 3506 #include<cmath> #include<vector> #include<cstdio> #include<cstring> #include<cstdlib> #include<iostream> #include<algorithm> #define rep(i,n) for(int i=0;i<n;++i) #define…
DP/四边形不等式 这题跟石子合并有点像…… dp[i][j]为将第 i 个点开始的 j 个点合并的最小代价. 易知有 dp[i][j]=min{dp[i][j] , dp[i][k-i+1]+dp[k+1][j-(k-i+1)]+w(i,k,j)} (这个地方一开始写错了……) 即,将一棵树从k处断开成(i,k)和(k+1,i+j-1)两棵树,再加上将两棵树连起来的两条树枝的长度w(i,k,j) 其中,$ w(i,k,j)=x[k+1]-x[i]+y[k]-y[i+j-1] $ 那么根据四边形…
DP/四边形不等式 要求将一个可重集S分成M个子集,求子集的极差的平方和最小是多少…… 首先我们先将这N个数排序,容易想到每个自己都对应着这个有序数组中的一段……而不会是互相穿插着= =因为交换一下明显可以减小极差 然后……直接四边形不等式上吧……这应该不用证明了吧? MLE了一次:这次的w函数不能再开数组去存了……会爆的,直接算就行了= =反正是知道下标直接就能乘出来. 数据比较弱,我没开long long保存中间结果居然也没爆……(只保证最后结果不会爆int,没说DP过程中不会……) //H…
DP/四边形不等式 做过POJ 1739 邮局那道题后就很容易写出动规方程: dp[i][j]=min{dp[i-1][k]+w[k+1][j]}(表示前 j 个点分成 i 块的最小代价) $w(l,r)=\sum_{i=l}^{r}\sum_{j=i+1}^{r}a[i]*a[j]$ 那么就有 $w(l,r+1)=w(l,r)+a[j]*\sum\limits_{i=l}^{r}a[i]$ 所以:w[i][j]明显满足 关于区间包含的单调性 然后我们大胆猜想,小(bu)心(yong)证明,w[…