Keras文本预处理】的更多相关文章

学习了Keras文档里的文本预处理部分,参考网上代码写了个例子 import keras.preprocessing.text as T from keras.preprocessing.text import Tokenizer text1='some thing to eat' text2='some thing to drink' texts=[text1,text2] #文本到文本列表 print (T.text_to_word_sequence(text1)) #以空格区分,中文也不例…
首先,对需要导入的库进行导入,读入数据后,用jieba来进行中文分词 # encoding: utf-8 #载入接下来分析用的库 import pandas as pd import numpy as np import xgboost as xgb from tqdm import tqdm from sklearn.svm import SVC from keras.models import Sequential from keras.layers.recurrent import LST…
目录 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作 前言 NLP相关的文本预处理 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作 前言 之所以心血来潮想写这篇博客,是因为最近在关注NLP文本分类这类任务中的文本预处理工作,想总结一下自己的所学所想,老规矩,本博文记载仅供备忘与参考,不具备学术价值,本文默认使用python3编程(代码能力是屎山级别的,请谅解),默认文本为英文,代码主要使用Pytorch(博主老笨蛋了,之前一直执迷不悟用Keras,现在刚刚开始用torch,怎么说…
Tika常见格式文件抽取内容并做预处理 作者 白宁超 2016年3月30日18:57:08 摘要:本文主要针对自然语言处理(NLP)过程中,重要基础部分抽取文本内容的预处理.首先我们要意识到预处理的重要性.在大数据的背景下,越来越多的非结构化半结构化文本.如何从海量文本中抽取我们需要的有价值的知识显得尤为重要.另外文本格式常常不一,诸如:pdf,word,excl,xml,ppt,txt等常见文件类型你或许经过一番周折还是有办法处理的.倘若遇到database,html,邮件,RTF,图像,语音…
文本预处理 实现步骤(处理语言模型数据集距离) 文本预处理的实现步骤 读入文本:读入zip / txt 等数据集 with zipfile.ZipFile('./jaychou_lyrics.txt.zip') as zin: with zin.open('jaychou_lyrics.txt') as f: corpus = f.read().decode('utf-8') 分词:把换行符替换成空格.如果处理的是英文,最好把大写改成小写.(因为第一次接触文本处理,理解的都很浅显) corpus…
引言 自然语言处理NLP(nature language processing),顾名思义,就是使用计算机对语言文字进行处理的相关技术以及应用.在对文本做数据分析时,我们一大半的时间都会花在文本预处理上,而中文和英文的预处理流程稍有不同,本文就对中.英文文本挖掘的常用的NLP的文本预处技术做一个总结. 文章内容主要按下图流程讲解: 1.中英文文本预处理的特点 中英文的文本预处理大体流程如上图,但是还是有部分区别.首先,中文文本是没有像英文的单词空格那样隔开的,因此不能直接像英文一样可以直接用最简…
文本预处理 timemachine.txt数据下载地址 链接:https://pan.baidu.com/s/1RO2OLyTRQZ90HJUW7V7BCQ 提取码:bjox NLTK数据集下载 链接:https://pan.baidu.com/s/1IvRhPOU2hUsQejQVunt5mQ 提取码:z2eh 文本是一类序列数据,一篇文章可以看作是字符或单词的序列,本节将介绍文本数据的常见预处理步骤,预处理通常包括四个步骤: 读入文本 分词 建立字典,将每个词映射到一个唯一的索引(index…
一.任务描述 最近尝试自行构建skip-gram模型训练word2vec词向量表.其中有一步需要统计各词汇的出现频率,截取出现频率最高的10000个词汇进行保留,形成常用词词典.对于这个问题,我建立了两个list,词汇list 和 词汇数量list,分别记录新出现的词汇和该词汇出现的次数.遍历整个语料文件,收集各个词汇并计算其出现次数.最后,对词汇数量list进行降序排序,留下出现频率最高的10000个词汇.流程大致如下图: 二.问题描述 在程序实际运行的过程中,发现程序运行的速度实在是太慢.对…
1.不同类别文本量统计,类别不平衡差异 2.文本长度统计 3.文本处理,比如文本语料中简体与繁体共存,这会加大模型的学习难度.因此,他们对数据进行繁体转简体的处理. 同时,过滤掉了对分类没有任何作用的停用词,从而降低了噪声. 4.上文提到训练数据中,存在严重的样本不均衡问题,如果不对该问题做针对性的处理,则会严重制约模型效果指标的提升. 通过对数据进行了大量的分析后,他们提出了一个简单有效的缓解样本不均衡问题的方法,基于标签传播的数据增强方法. [如果标题A与标题B一致,而标题A与标题C一致,那…
1.数据集准备 测试数据集下载:https://github.com/Asia-Lee/Vulnerability_classify/blob/master/testdata.xls 停用词过滤表下载:https://github.com/Asia-Lee/Vulnerability_classify/blob/master/stopwords.txt 2.数据预处理 (1)简单分词 # -*- coding: utf-8 -*- import pandas as pd import jieba…