先明确一些潜规则: 机器学习是个collection or set of models,一切实践性强的模型都会被归纳到这个领域,没有严格的定义,’有用‘可能就是唯一的共性. 机器学习大概分为三个领域: 一般的机器学习模型:没有掺杂太多统计概念,例如决策树,KNN聚类,感知机等. 统计机器学习模型:依赖统计理论,主要是贝叶斯统计,例如SVM,naive bayesian,贝叶斯线性回归,高斯过程等. 神经网络模型:可以简单的理解为感知机的扩展,因为扩展的太猛,单独成立门派咯. 如此定义,有助于菜鸡…
先明确一些潜规则: 机器学习是个collection or set of models,一切实践性强的模型都会被归纳到这个领域,没有严格的定义,’有用‘可能就是唯一的共性. 机器学习大概分为三个领域: 一般的机器学习模型:没有掺杂太多统计概念,例如决策树,KNN聚类,感知机等. 统计机器学习模型:依赖统计理论,主要是贝叶斯统计,例如SVM,naive bayesian,贝叶斯线性回归,高斯过程等. 神经网络模型:可以简单的理解为感知机的扩展,因为扩展的太猛,单独成立门派咯. 如此定义,有助于菜鸡…
科班出身,贝叶斯护体,正本清源,故拿”九阳神功“自比,而非邪气十足的”九阴真经“: 现在看来,此前的八层功力都为这第九层作基础: 本系列第九篇,助/祝你早日hold住神功第九重,加入血统纯正的人工智能队伍. 9. [Bayesian] “我是bayesian我怕谁”系列 - Gaussian Process 8. [Bayesian] “我是bayesian我怕谁”系列 - Variational Autoencoders 7. [Bayesian] “我是bayesian我怕谁”系列 - Bo…
本是neural network的内容,但偏偏有个variational打头,那就聊聊.涉及的内容可能比较杂,但终归会 end with VAE. 各个概念的详细解释请点击推荐的链接,本文只是重在理清它们之间的婆媳关系. 无意中打开了:中国科大iGEM项目报告,感慨颇多,尤其是时光,这其中也包含了写这系列文字的目的. 在技术上不得不走了不少弯路,每当无意间回首,对于那些”没机会“走弯路的同学们,是羡慕的:对于不懂得珍惜机会的同学们,也是充满惋惜. 希望,透过这些文字,能唤醒一些东西,助你找到正确…
要整理这部分内容,一开始我是拒绝的.欣赏贝叶斯的人本就不多,这部分过后恐怕就要成为“从入门到放弃”系列. 但,这部分是基础,不管是Professor Daphne Koller,还是统计学习经典,都有章节focus on这里. 可能这些内容有些“反人类正常逻辑”,故让更多的菜鸡选择了放弃. <MLaPP> 参考<MLaPP>的内容,让我们打开坑,瞧一瞧. 20.2 Belief propagation for treesIn this section, we generalize…
要整理这部分内容,一开始我是拒绝的.欣赏贝叶斯的人本就不多,这部分过后恐怕就要成为“从入门到放弃”系列. 但,这部分是基础,不管是Professor Daphne Koller,还是统计学习经典,都有章节focus on这里. 可能这些内容有些“反人类正常逻辑”,故让更多的菜鸡选择了放弃. <MLaPP> 参考<MLaPP>的内容,让我们打开坑,瞧一瞧. 20.2 Belief propagation for treesIn this section, we generalize…
涉及的领域可能有些生僻,骗不了大家点赞.但毕竟是人工智能的主流技术,在园子却成了非主流. 不可否认的是:乃值钱的技术,提高身价的技术,改变世界观的技术. 关于变分,通常的课本思路是: GMM --> EM --> VI --> Variational Bayesian Gaussian Mixture GMM是个好东西,实用的模型,也是讲解收敛算法的一个好载体. 关于这部分内容,如果你懂中文,推荐一个人,徐亦达老师.中文教学,亲手推算公式给读者的视频,是需要珍惜和珍藏的. 因为提供了pp…
打开prml and mlapp发现这部分目录编排有点小不同,但神奇的是章节序号竟然都为“十二”. prml:pca --> ppca --> fa mlapp:fa --> pca --> ppca 这背后又有怎样的隐情?不可告人的秘密又会隐藏多久? 基于先来后到原则,走prml路线. 首先,这部分内容,尤其是pca,都是老掉牙且稳定的技术,既然是统计机器学习,这次的目的就是借概率图来缕一遍思路,以及模型间的内在联系. 我们要建立的是一套完整的知识体系,而非“拿来一用,用完就扔”…
循序渐进的学习步骤是: Markov Chain --> Hidden Markov Chain --> Kalman Filter --> Particle Filter Markov不仅是一种技术,更是一种人生哲理,能启发我们很多. 一个信息爆炸的时代 一.信息的获取 首先要获得足够多的信息以及训练数据,才能保证所得信息中包含足够有价值的部分.但往往因为“面子”.“理子”.“懒"等原因,在有意无意间削弱了信息的获取能力. 二.信息的提取 信息中包含噪声,噪声中充斥着“有意无…
使用Boltzmann distribution还是Gibbs distribution作为题目纠结了一阵子,选择前者可能只是因为听起来“高大上”一些.本章将会聊一些关于信息.能量这方面的东西,体会“交叉学科”的魅力. In statistical mechanics and mathematics, a Boltzmann distribution (also called Gibbs distribution) is a probability distribution, probabili…