全球计算机视觉三大顶会之一 ECCV 2018(European Conference on Computer Vision)即将于 9 月 8 -14 日在德国慕尼黑拉开帷幕,旷视科技有多篇论文被此大会接收.在这篇论文中,旷视科技提出的一种通过学习局部单应变换实现人脸校正的全新方法——GridFace. 论文名称:<GridFace: Face Rectification via Learning Local Homography Transformations> 论文链接:https://…
全球计算机视觉三大顶会之一 ECCV 2018(European Conference on Computer Vision)即将于 9 月 8 -14 日在德国慕尼黑拉开帷幕.届时,旷视首席科学家孙剑博士将带领团队远赴盛会,助力计算机视觉技术的交流与落地.本文介绍了旷视科技被 ECCV 2018 所接收的一篇论文,该论文提出了一种用于场景理解的统一感知解析网络——UPerNet. 论文名称:<Unified Perceptual Parsing for Scene Understanding>…
旷视科技 -- Face++ 世界最大的人脸识别技术平台: https://www.megvii.com/…
雷锋网按:本文为旷视科技首席科学家孙剑日前在 CCF-ADL上做的题为<如何在大公司和创业公司做好计算机视觉研究>的分享,主要介绍了近期计算机视觉的发展现状,ResNet基本原理和设计,旷视科技在计算机视觉的研究进展等.最后他还分享了一些“ 如何在大公司和创业公司做好研究?”的心得. 孙剑,博士,旷视科技(Face++)首席科学家.研究负责人. 2003年毕业于西安交通大学人工智能与机器人研究所,毕业后加入微软亚洲研究院(Microsoft Research Asia),任至首席研究员.其主要…
基于网格曲面的几何拓扑信息可以为物体语义分析和几何建模提供较强的线索,但是,如此重要的连接性信息在点云中是缺失的.为此,旷视西雅图研究院首次提出一种全新的深度学习网络,称之为 GeoNet,可建模点云所潜在表征的网格曲面特征. 为证明这种学习型的测地表示的有效性,旷视西雅图研究院.UCLA 等机构提出一种融合方案,即把 GeoNet 与其他 baseline 和 backbone 相结合,比如 PU-Net.PointNet++,用于若干对潜在网格曲面特征理解有较高要求的点云分析任务. 得益于对…
通常的图像转换模型(如 StarGAN.CycleGAN.IcGAN)无法实现同时训练,不同的转换配对也不能组合.在本文中,英属哥伦比亚大学(UBC)与腾讯 AI Lab 共同提出了一种新型的模块化多域生成对抗网络架构——ModularGAN,生成的结果优于以上三种基线结果.该架构由几个可重复利用和可组合的模块组成.不同的模块可以在测试时轻松组合,以便在不同的域中高效地生成/转换图像.研究者称,这是首个模块化的 GAN 架构. 据了解,腾讯 AI Lab 共有 19 篇论文入选 ECCV 201…
http://www.skicyyu.org/ https://zhuanlan.zhihu.com/p/61910297 俞刚,旷视研究院Detection组负责人.2014年博士毕业于新加坡南洋理工大学,加入旷视.主要负责检测,分割,跟踪,骨架,动作行为等方面的研究以及算法落地工作.俞刚博士带队参加 2017 COCO+Places 挑战赛获得检测第一名,人体姿态估计第一名:接着,带队参加 2018 COCO+Mapillary 挑战赛,获四项第一.…
初来乍到,这个人说话容易让人觉得"狂". "我们将比赛结果提交上去,果不其然,是第一名的成绩."当他说出这句话的时候,表情没有一丝波澜,仿佛一切顺理成章. 他说的是AI顶会CVPR上的一项挑战赛结果,全球巨头都有参与,AI高手均同场竞技,第一名并不容易. 但如果你知道"他"叫范浩强. 一切就非常稀疏平常. 谁是范浩强? 当初那个奥赛金牌.保送清华姚班.高二加入旷视成为6号员工的天才少年,人称小强,一度是AI界的江湖传说. 曾经,他是国际信息学奥赛…
旷视MegEngine核心技术升级 7 月 11 日,旷视研究院在 2020 WAIC · 开发者日「深度学习框架与技术生态论坛」上围绕 6 月底发布的天元深度学习框架(MegEngine)Beta 版本核心技术升级与开源生态建设进行了首次深度解读. 7 月 11 日,旷视研究院在 2020 WAIC · 开发者日「深度学习框架与技术生态论坛」上围绕 6 月底发布的天元深度学习框架(MegEngine)Beta 版本核心技术升级与开源生态建设进行了首次深度解读. 作为一款训练推理一体化.动静合一…
目录 论文主要信息 文章概要 背景 YOLOX-DarkNet53 实现细节 YOLOv3 baseline Decoupled head 实验 思路 story Strong data augmentation Anchor-free multi positives SimOTA End-to-end(NMS-free) YOLO 消融实验 性能对比 YOLOX-L YOLOX-Tiny & YOLOX-Nano Model size V.S. Data augmentation SOTA 参…