正解:高斯消元 解题报告: 链接! 昂开始看到以为是,高斯消元板子题? 开始很容易想到的是,虽然是多维但是可以类比二维三维列出式子嘛 但是高斯消元是只能处理一元问题的啊,,,辣怎么处理呢 对的这就是这道题的考点辣quqqq 又放了一张图,,,实在是懒得打字了QAQ 其实这个点提醒过一次之后就很难忘了我jio得? 就是你每个式子都可以化成这样的形式,然后你就把前面那些平方看作一个新的未知数 好巧不巧的是它又刚好给的n+1个式子你就可以用它求出我们的n+1个未知数辣!(巧个屁,明明就是被出题人安排得…
题目链接 水比题,把圆方程展开减一下把平方都减掉半径的平方也减掉,高斯消元即可. 然后我只输出两位小数,爆了两次零.我好菜啊. #include<cstdio> #include<cstdlib> #include<algorithm> #include<cctype> #include<cstring> #include<cmath> #define maxn 20 #define eps 1e-9 using namespace…
[BZOJ1013]球形空间产生器(高斯消元) 题面 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数n(1<=N=10).接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标.每一个实数精确到小数点 后6位,且其绝对值都不超过20000. Output 有且只有一行,依次给出球心的n维坐…
洛谷题目传送门 球啊球 @xzz_233 qaq 高斯消元模板题,关键在于将已知条件转化为方程组. 可以发现题目要求的未知量有\(n\)个,题目却给了我们\(n+1\)个点的坐标,这其中必有玄机. 由高中数学知识可以知道,三点定圆(二维),四点定球(三维)······以此类推,应该是\(n+1\)个点才能确定一个\(n\)维空间下的球. 那么隐藏的另一个关键未知量在哪里呢? 想想圆的标准方程\((x-x_0)^2+(y-y_0)^2=r^2\),除了圆心坐标,半径不也对这个圆起到决定性作用么?…
1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=1013 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一…
[JSOI2008]球形空间产生器 \(solution:\) 非常明显的一道高斯消元.给了你n+1个球上的位置,我们知道球上任何一点到球心的距离是相等,所以我们 可以利用这一个性质.我们用n+1个球上的位置,两两组成n个等式(以距离为桥梁),将等式左右两边消元 即可得到n组多元方程,然后高斯消元即可! \(code:\) #include<iostream> #include<cstdio> #include<iomanip> #include<algorith…
题链:http://www.lydsy.com/JudgeOnline/problem.php?id=1013 1013: [JSOI2008]球形空间产生器sphere 时间限制: 1 Sec  内存限制: 162 MB 提交: 3063  解决: 1607 [提交][][] 题目描写叙述 有一个球形空间产生器可以在n维空间中产生一个坚硬的球体.如今,你被困在了这个n维球体中.你仅仅知道球面上n+1个点的坐标.你须要以最快的速度确定这个n维球体的球心坐标.以便于摧毁这个球形空间产生器. 输入…
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数n(1<=N=10).接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标.每一个实数精确到小数点 后6位,且其绝对值都不超过20000. Output 有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开.每个实数精…
最基础的高斯消元了,然而我把j打成i连WA连跪,考场上再犯这种错误就真的得滚粗了. #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> #define for1(i,a,n) for(int i=(a);i<=(n);++i) #define for2(i,a,n) for(int i=(a);i<(n);++i) #define for3(i,a,n) f…
点此看题面 大致题意: 给定一个\(n\)维球体上的\(n+1\)个点,请你求出这个球体的圆心的位置. 列出方程 这一看就是一道解方程题. 我们可以设这个球体的圆心的位置为\((x_1,x_2,..x_n)\),并设每个点到圆心的距离为\(dis\). 借助题目中给出的公式,我们可以得到以下方程: \(\begin{cases}\sqrt{(x_1-a_{1,1})^2+(x_2-a_{1,2})^2+...+(x_n-a_{1,n})^2}=dis\\\sqrt{(x_1-a_{2,1})^2…