bzoj4204: 取球游戏】的更多相关文章

DarkBZOJ4204 (题面来源) [题目描述] 有\(m\)个球,一开始每个球均有一个初始标号,标号范围为\(1-n\)且为整数,标号为\(i\)的球有\(a_{i}\)个,并保证\(Σa_{i} = m\). 每次操作等概率取出一个球(即取出每个球的概率均为\(\frac{1}{m}\)),若这个球标号为\(k(k < n)\),则将它重新标号为\(k + 1\):若这个球标号为\(n\),则将其重标号为\(1\).(取出球后并不将其丢弃) 现在你需要求出,经过\(K\)次这样的操作后,…
好神啊.. 首先递推随便yy一下就行了 然后发现可以用矩阵优化,不过显然是n^3logk的,不资磁 于是就有了性质,这个转移矩阵显然是一个循环矩阵(并不知道) 循环矩阵乘循环矩阵还是循环矩阵 然后就可以O(n)记录矩阵,O(n^2)完成乘法 然后就资磁啦 复杂度O(n^2logn) 详见代码 #include <iostream> #include <cstdio> #include <cmath> #include <cstring> #include &…
http://acm.nyist.net/JudgeOnline/problem.php?pid=518 取球游戏 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 今盒子里有n个小球,A.B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个,并且两人都很聪明,不会做出错误的判断. 我们约定:    每个人从盒子中取出的球的数目必须是:1,3,7或者8个. 轮到某一方取球时不能弃权! A先取球,然后双方交替取球,直到取完. 被迫拿到…
(25')取球游戏 今盒子里有n个小球,A.B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个,并且两人都很聪明,不会做出错误的判断. 我们约定: 每个人从盒子中取出的球的数目必须是:1,3,7或者8个. 轮到某一方取球时不能弃权! A先取球,然后双方交替取球,直到取完. 被迫拿到最后一个球的一方为负方(输方) 请编程确定出在双方都不判断失误的情况下,对于特定的初始球数,A是否能赢? 程序运行时,从标准输入获得数据,其格式如下: 先是一个整数n(n<100),表…
取球游戏 时间限制: 1000 ms  |  内存限制: 65535 KB 难度: 2   描述 今盒子里有n个小球,A.B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个,并且两人都很聪明,不会做出错误的判断. 我们约定:     每个人从盒子中取出的球的数目必须是:1,3,7或者8个. 轮到某一方取球时不能弃权! A先取球,然后双方交替取球,直到取完. 被迫拿到最后一个球的一方为负方(输方) 请编程确定出在双方都不判断失误的情况下,对于特定的初始球数,A是否…
取球游戏 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 今盒子里有n个小球,A.B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个,并且两人都很聪明,不会做出错误的判断. 我们约定:     每个人从盒子中取出的球的数目必须是:1,3,7或者8个. 轮到某一方取球时不能弃权! A先取球,然后双方交替取球,直到取完. 被迫拿到最后一个球的一方为负方(输方) 请编程确定出在双方都不判断失误的情况下,对于特定的初始球数,A是否能赢?…
今盒子里有n个小球,A.B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个,并且两人都很聪明,不会做出错误的判断. 我们约定: 每个人从盒子中取出的球的数目必须是:1,3,7或者8个. 轮到某一方取球时不能弃权! A先取球,然后双方交替取球,直到取完. 被迫拿到最后一个球的一方为负方(输方) 请编程确定出在双方都不判断失误的情况下,对于特定的初始球数,A是否能赢? 程序运行时,从标准输入获得数据,其格式如下: 先是一个整数n(n<100),表示接下来有n个整数.…
Observations 存在取球策略使得每个四连通块可以只剩一个球:保证取走一个球后仍然是个四连通块. 定义新的[相邻]关系:两球在同一行中且所在行中二者之间无其他球,或者两球在同一列且所在列中二者之间无其他列. 据此可定义新的[四连通块] 用等价关系来描述:两球等价当且仅当二者在同一行或同一列. 连通是一种等价关系,连通块即等价类. 可以用并查集或DFS计算连通块的数目.…
/* 今盒子里有 n 个小球,A.B 两人轮流从盒中取球,每个人都可以看到另一个人取了多少个, 也可以看到盒中还剩下多少个,并且两人都很聪明,不会做出错误的判断. 我们约定: 每个人从盒子中取出的球的数目必须是:1,3,7 或者 8 个. 轮到某一方取球时不能弃权! A 先取球,然后双方交替取球,直到取完. 被迫拿到最后一个球的一方为负方(输方) 请编程确定出在双方都不判断失误的情况下,对于特定的初始球数,A 是否能赢? 程序运行时,从标准输入获得数据,其格式如下: 先是一个整数 n(n<100…
较难,网上有能得出正确结果的代码,但是读了一下,像是拼凑出的结果,逻辑不通,代码和注释不符 参考网上代码写了一版,结构相对清晰,注释比较详细 题目很长: 两个人玩取球的游戏.一共有N个球,每人轮流取球,每次可取集合{n1,n2,n3}中的任何一个数目.如果无法继续取球,则游戏结束.此时,持有奇数个球的一方获胜.如果两人都是奇数,则为平局. 假设双方都采用最聪明的取法,第一个取球的人一定能赢吗?试编程解决这个问题. 输入格式:第一行3个正整数n1 n2 n3,空格分开,表示每次可取的数目 (0<n…