SPSS数据分析—简单线性回归】的更多相关文章

和相关分析一样,回归分析也可以描述两个变量间的关系,但二者也有所区别,相关分析可以通过相关系数大小描述变量间的紧密程度,而回归分析更进一步,不仅可以描述变量间的紧密程度,还可以定量的描述当一个变量变化时,对另一个变量的影响程度,这是相关分析无法做到的,正因为如此,回归分析更多用来预测和控制变量值,但是回归分析并不等同于因果关系. 根据模型的不同可以分为线性回归和非线性回归 线性回归分析一般用线性模型来描述,和方差分析模型一样,只是各部分的叫法有所不同,回归模型分为常量.回归部分.残差常量就是所谓…
只有一个自变量和因变量的线性回归称为简单线性回归,但是实际上,这样单纯的关系在现实世界中几乎不存在,万事万物都是互相联系的,一个问题的产生必定多种因素共同作用的结果. 对于有多个自变量和一个因变量的线性回归称为多重线性回归,有的资料上称为多元线性回归,但我认为多元的意思应该是真的因变量而非自变量的,而且多重共线性这个说法,也是针对多个自变量产生的,因此我还是赞同叫做多重线性回归. 多重线性回归是适用条件和简单线性回归类似,也是自变量与因变量之间存在线性关系.残差相互独立.残差方差齐性,残差呈正态…
  SPSS难吗?无非就是数据类型的区别后,就能理解应该用什么样的分析方法,对应着分析方法无非是找一些参考资料进行即可.甚至在线网页SPSS软件直接可以将数据分析结果指标人工智能地分析出来,这有多难呢?本文章将周老师(统计学专家)8年的数据分析经验浓缩,便于让不会数据分析的同学,在学习数据分析的过程中可以少走弯路,树立数据分析价值观,以及以数据进行决策的思维意识,并且可以快速的掌握数据分析.本文章分为四个板块进行说明,一是数据分析思维的培养.二是数据间的几类关系情况.三是数据分析方法的选择.四是…
标准的线性回归模型的假设之一是因变量方差齐性,即因变量或残差的方差不随自身预测值或其他自变量的值变化而变化.但是有时候,这种情况会被违反,称为异方差性,比如因变量为储蓄额,自变量为家庭收入,显然高收入家庭由于有更多的可支配收入,因此储蓄额差异较大,而低收入家庭由于没有过多的选择余地,因此储蓄会比较有计划和规律. 异方差性如果还是使用普通最小二乘法进行估计,那么会造成以下问题 1.估计量仍然具有无偏性,但是不具备有效性2.变量的显著性检验失去意义3.由于估计量变异程度增大,导致模型预测误差增大,精…
  一提到数学,高等数学,线性代数,概率论与数理统计,数值分析,空间解析几何这些数学课程,头疼呀.作为文科生,遇见这些课程时,通常都是各种寻求帮助,班上有位宅男数学很厉害,各种被女生‘围观’,这数学为什么这么难,学了有啥用呀. 有用的,当做数据分析的时候,使用到SPSS,在线SPSS分析的时候就知道用处了,在写论文的时候会用到SPSS数据分析,工作的时候也会用到SPSS数据分析.此时才知道原来数学很重要.我的数学不好肿么办?听我一 一道来. 1. 数据类型 学过数学的童鞋都知道,数学里面分了两类…
回归最初是遗传学中的一个名词,是由英国生物学家兼统计学家高尔顿首先提出来的,他在研究人类身高的时候发现:高个子回归人类的平均身高,而矮个子则从另一方向回归人类的平均身高: 回归分析整体逻辑 回归分析(Regression Analysis) 研究自变量与因变量之间关系形式的分析方法,它主要是通过建立因变量y与影响它的自变量 x_i(i=1,2,3- -)之间的回归模型,来预测因变量y的发展趋向. 回归分析的分类 线性回归分析 简单线性回归 多重线性回归 非线性回归分析 逻辑回归 神经网络 回归分…
简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项.线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误差项之后,方程的解法就存在了改变,一般使用最小二乘法进行计算. 使用sklearn.linear_model.LinearRegression进行线性回归 sklearn对Data Mining的各类算法已经有了较好的封装,基本可以使用fit.predict.score来训练.评价模型,并使用模型进…
一.机器学习基本概念 1.训练集和测试集 训练集(training set/data)/训练样例(training examples): 用来进行训练,也就是产生模型或者算法的数据集 测试集(testing set/data)/测试样例 (testing examples):用来专门进行测试已经学习好的模型或者算法的数据集 2.特征向量 特征向量(features/feature vector):属性的集合,通常用一个向量来表示,附属于一个实例 3.分类问题和回归问题 分类 (classific…
1.问题引入  在统计学中,线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析.这种函数是一个或多个称为回归系数的模型参数的线性组合.一个带有一个自变量的线性回归方程代表一条直线.我们需要对线性回归结果进行统计分析. 例如,假设我们已知一些学生年纪和游戏时间的数据,可以建立一个回归方程,输入一个新的年纪时,预测该学生的游戏时间.自变量为学生年纪,因变量为游戏时间.当只有一个因变量时,我们称该类问题为简单线性回归.当游戏时间与学生年纪和学生性别有关…
前文再续书接上一回,机器学习的主要目的,是根据特征进行预测.预测到的信息,叫标签. 从特征映射出标签的诸多算法中,有一个简单的算法,叫简单线性回归.本文介绍简单线性回归的概念. (1)什么是简单线性回归 "回归(regression)"是什么?如之前所讲,预测模型可区分为"分类器"跟"回归器",回归器,就是用来预测趋势变化的,比如预测明天哪支股会涨停,预测某天的降雨量是多少,预测未来一年房价的变化,等等.所以回归就是预测的意思,没有什么高深的.线…
写在开头 由于某些原因开始了机器学习,为了更好的理解和深入的思考(记录)所以开始写博客. 学习教程来源于github的Avik-Jain的100-Days-Of-MLCode 英文版:https://github.com/Avik-Jain/100-Days-Of-ML-Code 中文翻译版:https://github.com/MLEveryday/100-Days-Of-ML-Code 本人新手一枚,所以学习的时候遇到不懂的会经常百度,查看别人的博客现有的资料.但是由于不同的人思维和写作风格…
... sessionInfo() # 查询版本及系统和库等信息 getwd() path <- "E:/RSpace/R_in_Action" setwd(path) rm(list=ls()) # 清空内存中搞得变量 women # 基础安装中的 women 数据集 str(women) # 查看 women 的数据结构 summary(women) # 查看 women 的摘要统计量 # 简单线性回归 fit <- lm(weight ~ height, data=w…
grad_desc .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .tab…
  简单线性回归(最小二乘法)¶   0.引入依赖¶ In [7]: import numpy as np import matplotlib.pyplot as plt   1.导入数据¶ In [15]: points = np.genfromtxt("data.csv",delimiter=",") #points #提取points中的两列数据,分别作为x,y x=points[:,0]; y=points[:,1]; #用plt画出散点图 plt.scat…
本节将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价. 波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/boston处获取. 本小节直接从 TensorFlow contrib 数据集加载数据.使用随机梯度下降优化器优化单个训练样本的系数. 实现简单线性回归的具体做法 导入需要的所有软件包: 在神经网络中,所有的输入都线性增加.为了使训练有效,输入应该被归一化,所以这里定义一个函数来归一化输入数据: 现在使…
TensorFlow简单线性回归 将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价. 波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/boston处获取. 直接从 TensorFlow contrib 数据集加载数据.使用随机梯度下降优化器优化单个训练样本的系数. 实现简单线性回归的具体做法 导入需要的所有软件包:                                               …
Pytorch 实现简单线性回归 问题描述: 使用 pytorch 实现一个简单的线性回归. 受教育年薪与收入数据集 单变量线性回归 单变量线性回归算法(比如,$x$ 代表学历,$f(x)$ 代表收入):  $f(x) = w*x + b $ 我们使用 $f(x)$ 这个函数来映射输入特征和输出值. 目标: 预测函数 $f(x)$ 与真实值之间的整体误差最小. 损失函数:  使用均方差作为作为成本函数. 也就是预测值和真实值之间差的平方取均值. 成本函数与损失函数:  优化的目标( $y$ 代表…
记录下学习使用sklearn,将使用sklearn实现机器学习大部分内容 基于scikit-learn机器学习(第2版)这本书,和scikit-learn中文社区 简单线性回归 首先,最简单的线性回归也有几个地方要注意 fit的时候,对于X,要求是n*m的类型,y要是n*1的类型 sklearn会将得到的系数存储起来,分别在coef_中和intercept_中,intercept_是偏移,也就是b,coef_是k,或者向量中的W 来看具体例子 from sklearn.linear_model…
对于分类变量,我们知道通常使用卡方检验,但卡方检验仅能分析因素的作用,无法继续分析其作用大小和方向,并且当因素水平过多时,单元格被划分的越来越细,频数有可能为0,导致结果不准确,最重要的是卡方检验不能对连续变量进行分析. 使用线性回归模型可以解决上述的部分问题,但是传统的线性模型默认因变量为连续变量,当因变量为分类变量时,传统线性回归模型的拟合方法会出现问题,因此人们继续发展出了专门针对分类变量的回归模型.此类模型采用的基本方法是采用变量变换,使其符合传统回归模型的要求.根据变换的方法不同也就衍…
线性回归的首要满足条件是因变量与自变量之间呈线性关系,之后的拟合算法也是基于此,但是如果碰到因变量与自变量呈非线性关系的话,就需要使用非线性回归进行分析. SPSS中的非线性回归有两个过程可以调用,一个是分析—回归—曲线估计,另一个是分析—回归—非线性,两种过程的思路不同,这也是非线性回归的两种分析方法,前者是通过变量转换,将曲线线性化,再使用线性回归进行拟合:后者则是直接按照非线性模型进行拟合. 我们按照两种方法分别拟合同一组数据,将结果进行比较. 分析—回归—曲线估计 变量转换的方法简单易行…
判别分析作为一种多元分析技术应用相当广泛,和其他多元分析技术不同,判别分析并没有将降维作为主要任务,而是通过建立判别函数来概括各维度之间的差异,并且根据这个判别函数,将新加入的未知类别的样本进行归类,从这个角度讲,判别分析是从另一个角度对数据进行归类. 判别分析由于要建立判别函数,因此和回归分析类似,也有因变量和自变量,并且因变量应为分类变量,这样才能够最终将数据进行归类,而自变量可以是任意尺度变量,分类变量需要设置为哑变量. 既然和回归分析类似,那么判断分析也有一定的适用条件,这些适用条件也和…
我们已经知道,两个随机变量间的相关关系可以用简单相关系数表示,一个随机变量和多个随机变量的相关关系可以用复相关系数表示,而如果需要研究多个随机变量和多个随机变量间的相关关系,则需要使用典型相关分析. 典型相关分析由于研究的是两组随机变量之间的相关关系,因此也属于一种多元统计分析方法,多元统计分析方法基本上都有降维的思想,典型相关分析也不例外,它借用主成分分析的思想,在多个变量中提取少数几个综合变量,将研究多个变量间的相关关系转换为研究几个综合变量的相关关系. 典型相关分析首先在每组变量中寻找线性…
在市场研究中,有一种分析是研究消费者态度或偏好,收集的数据是某些对象的评分数据,这些评分数据可以看做是对象间相似性或差异性的表现,也就是一种距离,距离近的差异性小,距离远的差异性大.而我们的分析目的也是想查看这些对象间的差异性或相似性情况,此时由于数据的组成形式不一样,因此不能使用对应分析,而需要使用一种专门分析此问题的方法——多维尺度分析(MDS模型).多维尺度分析和对应分析类似,也是通过可视化的图形阐述结果,并且也是一种描述性.探索性数据分析方法. 基于以上,我们可以得知,多维尺度分析经常使…
卡方检验只能对两个分类变量之间是否存在联系进行检验,如果分类变量有多个水平的话,则无法衡量每个水平间的联系.对此,虽然可以使用逻辑回归进行建模,但是如果分类变量的水平非常多,就需要分别设定哑变量,这样对于操作和解释都非常繁琐.而对应分析则是专门解决上述问题的方法,它特别擅长对两个分类变量的多个水平之间的对应性进行分析.常用于市场细分.产品定位.品牌形象及满意度研究. 对应分析最大的特点是通过直观的图形方式,展现分类变量不同水平之间的联系,水平越多,效果越好. 对应分析是一种多元统计分析方法,由于…
传统线性模型的假设之一是因变量之间相互独立,并且如果自变量之间不独立,会产生共线性,对于模型的精度也是会有影响的.虽然完全独立的两个变量是不存在的,但是我们在分析中也可以使用一些手段尽量减小这些问题产生的影响,例如采用随机抽样减小因变量间的相关性,使其满足假设:采用岭回归.逐步回归.主成分回归等解决共线性的问题.以上解决方法做都会损失数据信息,而且似乎都是采取一种回避问题的态度而非解决问题,当碰到更复杂的情况例如因变量和自变量相互影响时,单靠回避是无法得到正确的分析结果的,那么有没有更好的直接解…
线性回归最常用的是以最小二乘法作为拟合方法,但是该方法比较容易受到强影响点的影响,因此我们在拟合线性回归模型时,也将强影响点作为要考虑的条件.对于强影响点,在无法更正或删除的情况下,需要改用更稳健的拟合方法,最小一乘法就是解决此类问题的方法. 最小二乘法由于采用的是残差平方和,而强影响点的残差通常会比较大,在平方之后会更大,而最小一乘法不使用平方和而采用绝对值之和,因此对于强影响点的残差来说,其影响会小很多. 我们通过一个例子来比较当强影响点出现时,最小二乘法和最小一乘法的拟合效果,在SPSS中…
相关系数是衡量变量之间相关程度的度量,也是很多分析的中的当中环节,SPSS做相关分析比较简单,主要是区别如何使用这些相关系数,如果不想定量的分析相关性的话,直接观察散点图也可以. 相关系数有一些需要注意的地方: 1.两变量之间存在相关,仅意味着存在关联,并不意味着因果关系.2.相关系数不能进行加减乘除运算,没有单位,不同的相关系数不可比较3.相关系数大小容易受到数据取值区间大小和数据个数大小的影响.4.相关系数也需要进行检验确定其是否有统计学意义 相关系数的假设检验中H0:相关系数=0,变量间没…
SPSS中t检验全都集中在分析—比较均值菜单中.关于t检验再简单说一下,我们知道一个统计结果需要表达三部分内容,即集中性.变异性.显著性. 集中性的表现指标是均值变异的的表现指标是方差.标准差或标准误显著性的则是根据统计量判断是否达到显著性水平 由于t分布样本均值的抽样分布,那么基于t分布的t检验就是样本均值的检验,是对均值差异的显著性检验. t检验可以在以下三种分析中使用 1.样本均数与总体均数的差异性分析(单样本t检验) 2.配对设计样本均数或两非独立两样本均数差异性分析(配对t检验) 3.…
描述性统计分析是针对数据本身而言,用统计学指标描述其特征的分析方法,这种描述看似简单,实际上却是很多高级分析的基础工作,很多高级分析方法对于数据都有一定的假设和适用条件,这些都可以通过描述性统计分析加以判断,我们也会发现,很多分析方法的结果中,或多或少都会穿插一些描述性分析的结果. 描述性统计主要关注数据的三大内容: 1.集中趋势 2.离散趋势 3.数据分布情况 描述集中趋势的指标有均值.众数.中位数,其中均值包括截尾均值.几何均值.调和均值等. 描述离散趋势的指标有频数.相对数.方差.标准差.…
文章来源:公众号-智能化IT系统. 回归模型有多种,一般在数据分析中用的比较常用的有线性回归和逻辑回归.其描述的是一组因变量和自变量之间的关系,通过特定的方程来模拟.这么做的目的也是为了预测,但有时也不是全部为了预测,只是为了解释一种现象,因果关系. 还是按照老风格,不说空泛的概念,以实际的案例出发. 还是先前的案例,购房信息,我们这次精简以下,这8位购房者我们只关注薪水和年龄这两个因素,信息如下: 用户ID 年龄 收入 是否买房 1 27 15W 否 2 47 30W 是 3 32 12W 否…