51nod 1434 理解lcm】的更多相关文章

1434 区间LCM 题目来源: TopCoder 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 一个整数序列S的LCM(最小公倍数)是指最小的正整数X使得它是序列S中所有元素的倍数,那么LCM(S)=X. 例如,LCM(2)=2,LCM(4,6)=12,LCM(1,2,3,4,5)=60. 现在给定一个整数N(1<=N<=1000000),需要找到一个整数M,满足M>N,同时LCM(1,2,3,4,...,N-1,N) 整除 LCM…
1434 区间LCM 基准时间限制:1 秒 空间限制:131072 KB 一个整数序列S的LCM(最小公倍数)是指最小的正整数X使得它是序列S中所有元素的倍数,那么LCM(S)=X. 例如,LCM(2)=2,LCM(4,6)=12,LCM(1,2,3,4,5)=60. 现 在给定一个整数N(1<=N<=1000000),需要找到一个整数M,满足M>N,同时LCM(1,2,3,4,...,N- 1,N) 整除 LCM(N+1,N+2,....,M-1,M),即LCM(N+1,N+2,...…
首先可以得出一个性质:LCM(1,2,3,4,...,N-1,N) 中质因子k的出现的次数为t,则有k^t<=n 根据这个性质我们先筛出素数,然后枚举每个质数,求出对应的k和t,然后找出倍数j(不会很大) ,使得j*k^t>n,这个j*k^t是ans的可能取值,所以ans = max(ans, j*k^t)不断更新最大的ans, 这样可以保证尽量小的m使得LCM(N+1,N+2,....,M-1,M)中存在j*k^t把LCM(1,2,3,4,...,N-1,N)中k^t除尽 #include…
输入2个正整数A,B,求A与B的最小公倍数. 收起   输入 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) 输出 输出A与B的最小公倍数. 输入样例 30 105 输出样例 210 代码: #include <iostream> #include <cstdio> #include <cmath> #define MAX 50000 using namespace std; typedef long long ll; int gcd(in…
将n!标准分解.m!/n!必定需要包含n!的分解式.对于每个质数枚举最小的答案,然后总的取最大. #include<cstdio> #include<cstring> #include<cctype> #include<algorithm> #include<cmath> using namespace std; #define rep(i,s,t) for(int i=s;i<=t;i++) #define dwn(i,s,t) for(…
UVA11388 GCD LCM Description of the title PDF The GCD of two positive integers is the largest integer that divides both the integers without any remainder. The LCM of two positive integers is the smallest positive integer that is divisible by both th…
地址 https://www.51nod.com/live/liveDescription.html#!liveId=23 1187 寻找分数 给出 a,b,c,d, 找一个分数p/q,使得a/b < p/q < c/d,并且q最小.例如:1/3同1/2之间,符合条件且分母最小的分数是2/5.(如果q相同,输出p最小的)   Input 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 10000) 第2 - T + 1行:每行4个数,a,b,c,d,中间用空…
1.潜类别模型概述 潜在类别模型(Latent Class Model, LCM; Lazarsfeld & Henry, 1968)或潜在类别分析(Latent Class Analysis, LCA)是通过间断的潜变量即潜在类别(Class)变量来解释外显指标间的关联,使外显指标间的关联通过潜在类别变量来估计,进而维持其局部独立性的统计方法(见图1-1).其基本假设是,外显变量各种反应的概率分布可以由少数互斥的潜在类别变量来解释,每种类别对各外显变量的反应选择都有特定的倾向(邱皓政,2008…
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1575 万年巨坑终于填掉了…… 首先是煞笔西瓜的做题历程O_O. 原题要求$\sum_{i=1}^n\sum_{j=1}^i\sum_{k=1}^i [(i,j),(i,k)]$ 那么先推一波式子吧 balabala 我也忘记自己是怎么推的了(雾 总之最后推出来是这样的 $ ans=\sum_{i=1}^{n} f(\left\lfloor\frac{n}{i}…
题解 话说LOJ说我今天宜学数论= =看到小迪学了杜教筛去蹭了一波小迪做的题 标解的杜教筛的函数不懂啊,怎么推的毫无思路= = 所以写了个复杂度稍微高一点的?? 首先,我们发现f是个积性函数,那么我们就有-- \(\prod_{i = 1}^{k}f(p_{i}^{a_{i}})\) 我们发现,对于每个质因子,gcd是取较小值,lcm取较大值 \(f(lcm(x,y)) * f(gcd(x,y)) = \prod_{i = 1}^{k} f(p_{i}^{max(a_{i},b_{i}) + m…