隐语义模型LFM(latent factor model)】的更多相关文章

主要介绍 隐语义模型 LFM(latent factor model). 隐语义模型最早在文本挖掘领域被提出,用于找到文本的隐含语义,相关名词有 LSI.pLSA.LDA 等.在推荐领域,隐语义模型也有着举足轻重的地位.下述的实验设计见 推荐系统–用户行为和实验设计 基本思想 核心思想: 通过隐含特征(latent factor)联系用户兴趣和物品.具体来说,就是对于某个用户,首先得到他的兴趣分类,然后从分类中挑选他可能喜欢的物品.基于兴趣分类的方法需要解决3个问题: 如何对物品进行分类? 如何…
LFM(latent factor model)隐语义模型,这也是在推荐系统中应用相当普遍的一种模型.那这种模型跟ItemCF或UserCF的不同在于: 对于UserCF,我们可以先计算和目标用户兴趣相似的用户,之后再根据计算出来的用户喜欢的物品给目标用户推荐物品. 而ItemCF,我们可以根据目标用户喜欢的物品,寻找和这些物品相似的物品,再推荐给用户. 我们还有一种方法,先对所有的物品进行分类,再根据用户的兴趣分类给用户推荐该分类中的物品,LFM就是用来实现这种方法. 如果要实现最后一种方法,…
LFM(latent factor model)隐语义模型,这也是在推荐系统中应用相当普遍的一种模型.那这种模型跟ItemCF或UserCF的不同在于: 对于UserCF,我们可以先计算和目标用户兴趣相似的用户,之后再根据计算出来的用户喜欢的物品给目标用户推荐物品. 而ItemCF,我们可以根据目标用户喜欢的物品,寻找和这些物品相似的物品,再推荐给用户. 我们还有一种方法,先对所有的物品进行分类,再根据用户的兴趣分类给用户推荐该分类中的物品,LFM就是用来实现这种方法. 如果要实现最后一种方法,…
  隐语义模型是通过隐含特征,联系用户和物品,基于用户的特征对物品进行自动聚类,然后在用户感兴趣的类中选择物品推荐给用户. 对于推荐系统,常用的算法: USER-CF:给用户推荐和他兴趣相似的用户喜欢的物品 ITEM-CF:给用户推荐他们感兴趣物品的相似物品 LFM:得到用户感兴趣的分类,从该分类中挑选物品推荐给用户 对于LFM,要做的工作有: 1.对物品进行分类,这里是模糊分类,也就是得出每个物品在每个类中的权重,并不是说一个物品就是属于一个类 2.确定用户感兴趣的类,这里要计算用户对所有类的…
对于某个用户,首先得到他的兴趣分类,然后从分类中挑选他可能喜欢的物品.总结一下,这个基于兴趣分类的方法大概需要解决3个问题. 如何给物品进行分类? 如何确定用户对哪些类的物品感兴趣,以及感兴趣的程度? 对于一个给定的类.选择哪些属于这个类的物品推荐给用户,以及如何确定这些物品在一个类中的权重? 隐含语义分析技术采用基于用户行为统计的自动聚类,较好地解决了上面提出的问题. 隐含语义分析技术的分类来自对用户行为的统计,代表了用户对物品分类的看法.隐含语义分析技术和ItemCF在物品分类方面的思想类似…
http://blog.csdn.net/pipisorry/article/details/49256457 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 推荐系统Recommendation System之隐语义模型latent semantic analysis {博客内容:推荐系统构建三大方法:基于内容的推荐content-based,协同过滤collaborative filtering,隐语义模型(LFM…
项亮老师在其所著的<推荐系统实战>中写道: 第2章 利用用户行为数据 2.2.2 用户活跃度和物品流行度的关系 [仅仅基于用户行为数据设计的推荐算法一般称为协同过滤算法.学术界对协同过滤算法进行了深入研究,提出了很多方法,比如 基于领域的方法(neighborhood-based). 隐语义模型(latent factor model). 基于图的随机游走算法(random walk on graph)等.   在这些方法中,最著名的.在业界得到最广泛的算法是基于领域的方法.而基于领域的方法主…
最近在拜读项亮博士的<推荐系统实践>,系统的学习一下推荐系统的相关知识.今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一个总结. 隐语义模型LFM和LSI,LDA,Topic Model其实都属于隐含语义分析技术,是一类概念,他们在本质上是相通的,都是找出潜在的主题或分类.这些技术一开始都是在文本挖掘领域中提出来的,近些年它们也被不断应用到其他领域中,并得到了不错的应用效果.比如,在推荐系统中它能够基于用户的行为对item进行自动聚类,也就是把item划分到不同类别/主题,这些主题…
最近在拜读项亮博士的<推荐系统实践>,系统的学习一下推荐系统的相关知识.今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一个总结. 隐语义模型LFM和LSI,LDA,Topic Model其实都属于隐含语义分析技术,是一类概念,他们在本质上是相通的,都是找出潜在的主题或分类.这些技术一开始都是在文本挖掘领域中提出来的,近 些年它们也被不断应用到其他领域中,并得到了不错的应用效果.比如,在推荐系统中它能够基于用户的行为对item进行自动聚类,也就是把item划分到不 同类别/主题,这些…
隐语义模型: 物品       表示为长度为k的向量q(每个分量都表示  物品具有某个特征的程度) 用户兴趣 表示为长度为k的向量p(每个分量都表示  用户对某个特征的喜好程度) 用户u对物品i的兴趣可以表示为 其损失函数定义为-        使用随机梯度下降,获得参数p,q   负样本生成: 对于只有正反馈信息(用户收藏了,关注了xxx)的数据集,需要生成负样本,原则如下 1.生成的负样本要和正样本数量相当 2.物品越热门(用户没有收藏该物品),越有可能是负样本   实现: # coding…
本文从基础介绍隐语义模型和NMF. 隐语义模型 ”隐语义模型“常常在推荐系统和文本分类中遇到,最初来源于IR领域的LSA(Latent Semantic Analysis),举两个case加快理解. 向用户推荐物品 在推荐系统中,可以通过隐含语义模型将用户(user)和物品(item)自动分类,这些类别是自动生成的.这些类别也可以叫做“隐含的分类”,也许看不懂.每个用户或者物品会被分到多个类别中,属于某个类别的权重会被计算出来. 假设现在有一个大小为m×n的评分矩阵V,包含了m个用户对n个物品的…
一.离线推荐服务 离线推荐服务是综合用户所有的历史数据,利用设定的离线统计算法和离线推荐算法周期性的进行结果统计与保存,计算的结果在一定时间周期内是固定不变的,变更的频率取决于算法调度的频率. 离线推荐服务主要计算一些可以预先进行统计和计算的指标,为实时计算和前端业务相应提供数据支撑. 离线推荐服务主要分为统计性算法.基于ALS的协同过滤推荐算法以及基于ElasticSearch的内容推荐算法. 在recommender下新建子项目StatisticsRecommender,pom.xml文件中…
实际应用 LFM 模型在实际使用中有一个困难,就是很难实现实时推荐.经典的 LFM 模型每次训练都需要扫描所有的用户行为记录,并且需要在用户行为记录上反复迭代来优化参数,所以每次训练都很耗时,实际应用中只能每天训练一次.在新闻推荐中,冷启动问题非常明显,每天都会有大量的新闻,这些新闻往往如昙花一现,在很短的时间获得很多人的关注,然后在很短时间内失去关注,实时性就非常重要.雅虎对此提出了一个解决方案. 首先,利用新闻链接的内容属性(关键词.类别等)得到链接 i 的内容特征向量 yi,其次,实时收集…
模型解释: http://blog.csdn.net/harryhuang1990/article/details/9924377…
连续隐变量模型(continuous latent model)也常常被称为降维(dimensionality reduction) PCA Factor Analysis ICA 连续的情形比离散的情况更有效在信息表示上:…
先创建一个reader.py,后面的程序将用到其中的函数. from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd def read_file(filname, sep="\t"): col_names = ["user", "item", "rate", "st&q…
使用预定义模型QDirModel的例子 Main.cpp #include <QApplication> #include "directoryviewer.h" int main(int argc, char *argv[]) { QApplication app(argc, argv); DirectoryViewer directoryViewer; directoryViewer.show(); return app.exec(); } directoryviewe…
使用预定义模型 QStringListModel例子 源代码如下 Main.cpp #include <QApplication> #include "teamleadersdialog.h" int main(int argc, char *argv[]) { QApplication app(argc, argv); //字符串数组 QStringList leaders; leaders << "Stooge Viller" <&…
1.潜类别模型概述 潜在类别模型(Latent Class Model, LCM; Lazarsfeld & Henry, 1968)或潜在类别分析(Latent Class Analysis, LCA)是通过间断的潜变量即潜在类别(Class)变量来解释外显指标间的关联,使外显指标间的关联通过潜在类别变量来估计,进而维持其局部独立性的统计方法(见图1-1).其基本假设是,外显变量各种反应的概率分布可以由少数互斥的潜在类别变量来解释,每种类别对各外显变量的反应选择都有特定的倾向(邱皓政,2008…
阅读文献:Distance Dependent Infinite Latent Feature Model 作者:Samuel J.Gershman ,Peter I.Frazier ,and David M.Blei   摘要: 潜在特征模型在对数据进行小模块分解的过程中被广泛使用.这些模型的贝叶斯非参数变量在潜在特征上使用了IBP先验,进而使得特征的数量由数据决定.我们提出了一种一般化的IBP--距离依赖IBP,用来建模不可交换数据.这种模型依赖于数据点之间定义的距离,倾向于使相邻近的数据共…
TVM部署预定义模型 本文通过深度学习框架量化的模型加载到TVM中.预量化的模型导入是在TVM中提供的量化支持之一. 本文演示如何加载和运行由PyTorch,MXNet和TFLite量化的模型.加载后,可以在任何TVM支持的硬件上运行已编译的量化模型. 首先,必要输入 from PIL import Image import numpy as np import torch from torchvision.models.quantization import mobilenet as qmob…
理论沉淀:隐马尔可夫模型(Hidden Markov Model, HMM) 参考链接:http://www.zhihu.com/question/20962240 参考链接:http://blog.csdn.net/ppn029012/article/details/8923501 本博文链接:http://www.cnblogs.com/dzyBK/p/5011727.html 1 题设 假设有n个骰子(从1~n编号),每个骰子有m面,每面标有一个数字且不重复,数字取值限制在[1,m].(1…
本文简单整理了以下内容: (一)贝叶斯网(Bayesian networks,有向图模型)简单回顾 (二)隐马尔可夫模型(Hidden Markov model,HMM) 写着写着还是写成了很规整的样子.以后可能会修改. (一)贝叶斯网简单回顾 图模型(PGM)根据边是否有向,可以分为有向图模型和无向图模型. 待补充-- (二)隐马尔可夫模型 隐马尔可夫模型(Hidden Markov model,HMM)属于生成式模型,被广泛用于序列标注问题,在语音语言领域里比较出名的应用包括语音识别.中文分…
3d模型 手办制作 3d model manual production 作者:韩梦飞沙 Author:han_meng_fei_sha 邮箱:313134555@qq.com E-mail: 313134555 @qq.com 视频链接:Video link: 游戏开发之三维手办制作技巧…
本文内容 异步编程类型 异步编程模型(APM) 参考资料 首先澄清,异步编程模式(Asynchronous Programming Patterns)与异步编程模型(Asynchronous Programming Model,APM),它们的中文翻译只差一个字,英文名称差在最后一个单词,一个是 Pattern,一个是 Model.模型 Model 比 模式 Pattern 更具体.前者是一个统称,比后者含义要广,前者包含三个模型,而 APM 只是它其中一个而已. 个人理解,异步编程模型(APM…
http://blog.csdn.net/hxpjava1/article/details/55189077 JVM有主内存(Main Memory)和工作内存(Working Memory),主内存就是平时所说的Java堆内存,存放程序中所有的类实例.静态数据等变量,是线程共享的,而工作内存中存放的是从主内存中拷贝过来的变量以及访问方法所取得的局部变量,是每个线程独立所有的,其他线程不能访问. 每个线程都有自己的执行空间(即工作内存),线程执行的时候用到某变量,首先要将变量从主内存拷贝的自己的…
搜索结果排序是搜索引擎最核心的构成部分,很大程度上决定了搜索引擎的质量好坏.虽然搜索引擎在实际结果排序时考虑了上百个相关因子,但最重要的因素还是用户查询与网页内容的相关性.(ps:百度最臭名朝著的“竞价排名”策略,就是在搜索结果排序时,把广告客户给钱最多的排在前列,而不是从内容质量考虑,从而严重影响了用户体验).这里要讲的就是:给定用户搜索词,如何从内容相关性的角度对网页进行排序.判断网页内容是否与用户查询相关,这依赖于搜索引擎所采用的检索模型,常见的检索模型有:布尔模型.向量空间模型.概率模型…
转自:http://www.cnblogs.com/xrwang/archive/2012/04/24/MPCBBGM.html 多阶编码本模型(Multi phase codebook model) 作者:王先荣 注:这是2010年所写的文章,因为要发论文到杂志上的缘故,这篇文章放到博客几天便隐藏起来了,最近论文正是刊出,所以文章又重见天日了.您可以在后面的地址查看或者下载论文. http://www.ceaj.org/Jweb_gcyyy/CN/abstract/abstract27730.…
原文:http://blog.csdn.net/zhangbinfly/article/details/7734118 最近想学习下Lucene ,以前运行的Demo就感觉很神奇,什么原理呢,尤其是查找相似度最高的.最优的结果.索性就直接跳到这个问题看,很多资料都提到了VSM(Vector Space Model)即向量空间模型,根据这个模型可以对搜索的结果进行最优化的筛选,目前还不知道如何证明,只能凭借想象应该是这个样子的. 1.看一下TF/IDF 我们先来看下一个叫TF/IDF的概念,一般它…