1227 平均最小公倍数 题意:求\(\frac{1}{n} \sum_{i=1}^n lcm(n,i)\) 和的弱化版? \[ ans = \frac{1}{2}((\sum_{i=1}^n \sum_{d=1}^{\lfloor \frac{n}{i} \rfloor} d\cdot \varphi(d) ) - \sum_{i=1}^n) \] 求\(id\cdot \varphi\)的前缀和,卷上\(id\)就行了 我竟然把整除分块打错了,直接i++,gg #include <iostr…
以后这种题能用phi的就不要用mu-mu往往会带着个ln然后被卡常致死 把题目要求转换为前缀和相减的形式,写出来大概是要求这样一个式子: \[ \sum_{i=1}^{n}\sum_{j=1}^{i}\frac{j}{gcd(i,d)} \] 注意j的限制是i \[ \sum_{d=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{i}[gcd(i,j)==d]\frac{j}{d} \] \[ \sum_{d=1}^{n}\sum_{i=1}^{\left \lfloor \fr…
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1227 懒得打公式了,看这位的吧:https://blog.csdn.net/fromatp/article/details/74999989 又一次将我的智商下限刷低的一道题,论我根本没注意到[gcd(i,j)==1]*j=phi(i)*i/2这个悲催的事实. 果然我数学活该学不好. #include<map> #include<cmath> #inclu…
题解 这个故事告诉们数论函数不要往分式上跑,你推不出来 好久没推式子了这么明显的转化我都忘了= = 首先\(A(n) = \frac{1}{n} \sum_{i = 1}^{n} \frac{i * n}{gcd(i,n)}\) 然后显然可以把n消掉 \(A(n) = \sum_{i = 1}^{n} \frac{i}{gcd(i,n)}\) 改为枚举约数 \(A(n) = \sum_{d = 1}^{n} \frac{1}{d}\sum_{i = 1}^{n} i [gcd(i,n) == d…
原题链接 Lcm(a,b)表示a和b的最小公倍数,A(n)表示Lcm(n,i)的平均数(1 <= i <= n), 例如:A(4) = (Lcm(1,4) + Lcm(2,4) + Lcm(3,4) + Lcm(4,4)) / 4 = (4 + 4 + 12 + 4) / 4 = 6.   F(a, b) = A(a) + A(a + 1) + ...... A(b).(F(a,b) = ∑A(k), a <= k <= b) 例如:F(2, 4) = A(2) + A(3) +…
[题意]给定a和b,求满足a<=lcm(x,y)<=b && x<y的数对(x,y)个数.a,b<=10^11. [算法]莫比乌斯反演+组合计数 [题解]★具体推导过程参考:51nod1222 最小公倍数计数 过程运用到的技巧: 1.将所有i和j的已知因子提取出来压缩上届. 2.将带有μ(k)的k提到最前面,从而后面变成单纯的三元组形式. 最终形式: $$ans=\sum_{k=1}^{\sqrt n} \mu(k)  \sum_{d}    \sum_{i} \s…
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1353 今天小a在纸上研究树的形态,众所周知的,有芭蕉树,樟树,函树,平衡树,树套树等等.那么小a今天在研究的就是其中的平衡树啦. 小a认为一棵平衡树的定义为一个n个点,从1到n编号,n-1条边,且任意两点间一定存在唯一一条简单路径,且n>=k. 现在小a看到一棵很大很大的树,足足有n个节点,这里n一定大于等于k!为了方便起见,它想把这个树删去某些边,使得剩下的若干个联通…
首先这道题理论上是可以做到O(nlogn)的,因为OEIS上有一个明显可以用多项式乘法加速的式子 但是由于模数不是很兹磁,所以导致nlogn很难写 在这里说一下O(n*sqrt(n))的做法 首先我们很容易发现当物品的大小>sqrt(n)的时候,物品数量的限制形同虚设 也就是说物品的大小>sqrt(n)的时候实际上是一个完全背包 而对于完全背包,有着另外一种做法(参照NOIP2001 数的划分) 由于我们知道假设我们只用>sqrt(n)的物品,我们最多使用sqrt(n)个物品 不妨设f[…
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1222 求\([a,b]\)中的个数转化为求\([1,b]\)中的个数减去\([1,a)\)中的个数. \[ \begin{aligned} &\sum_{i=1}^n\sum_{j=1}^n\left[\frac{ij}{(i,j)}\leq n\right]\\ =&\sum_{d=1}^n\sum_{i=1}^{\left\lfloor\frac nd\rig…
[题意]给定n,求Σi=1~nΣj=1~n lcm(i,j),n<=10^10. [算法]杜教筛 [题解]就因为写了这个非常规写法,我折腾了3天…… $$ans=\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)$$ 令 $$g(n)=n*\sum_{i=1}^{n}\frac{i}{(n,i)}$$ 那么 $$ans(n)=2*g(n)-\sum_{i=1}^{n}i$$ 枚举gcd,化简g(n). $$g(n)=n*\sum_{d|n}1/d\sum_{i=1}^{n}…