出处0.0用到第二类斯特林数的性质,做法好像很多,我打的是直接ntt,由第二类斯特林数的容斥公式可以推出,我们可以对于每一个i,来一次ntt求出他与所有j组成的第二类斯特林数的值,这个时候我们是O(n^2logn)的,还不如暴力,但是我们发现,对于刚刚提到的容斥的式子,将其化为卷积形式后,其一边的每一项对于每一个i都相同,另一边的每一项是对于所有的i形成一个n项的等比数列,这样我们可以把成等比数列的一边求和,用固定的一边去卷他们的和,这时候的答案的每一项就是所有的i的这一项的和,然后我们再O(n…
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林数 \] 首先你要把这个组合计数肝出来,于是我去翻了一波<组合数学> 用斯特林数容斥原理推导那个式子可以直接出卷积形式,见下一篇,本篇是分治fft做法 组合计数 斯特林数 \(S(n,i)\)表示将n个不同元素划分成i个相同集合非空的方案数 Bell数 \(B(n)=\sum\limits_{i=…
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=4555 题目大意: 给定 \(S(n,m)\) 表示第二类斯特林数,定义函数 \(f(n)\) : \(f(n) = \sum_{i=0}^n\sum_{j=0}^iS(i,j)*2^j*(j!)\) \(S(i, j)\) 表示第二类斯特林数,递推公式为: \(S(i,j) = S(i-1,j-1) + j*S(i-1,j),(1 \leq j \leq i-1)\). 边界条件为:…
[Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 679  Solved: 534[Submit][Status][Discuss] Description 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <= j &l…
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林数 \] 首先你要把这个组合计数肝出来,于是我去翻了一波<组合数学> 分治fft做法见上一篇,本篇是容斥原理+fft做法 组合计数 斯特林数 \(S(n,i)\)表示将n个不同元素划分成i个相同集合非空的方案数 考虑集合不相同情况\(S'(n,i)=S(n,i)*i!\),我们用容斥原理推♂倒她…
题意 给定 $n$ , 求下式的值: $$ f(n)= \sum_{i=0}^n\sum_{j=0}^i\begin{Bmatrix}i\\ j\end{Bmatrix}\times 2^j\times j!$$ 题解 这题比较神仙... 那么我们可以思考如何来求一个比较简单的转移式. 首先我们发现, $f(n)$ 表达式中的第一重和式包含了 $f(n-1)$, 那么我们对 $f$ 的值做差分, 于是我们有 $f(n)-f(n-1)=\sum\limits_{i=0}^n\begin{Bmatr…
题目链接 \(Description\) 求 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)2^jj!\]对998244353取模后的结果. \(n<=10^5\) \(Solution\) \(S(i,j)\)在这里就非常碍事,怎么把它写成一个多项式的形式呢? 第二类斯特林数还有一种容斥的写法 \[S(n,m)=\frac{1}{m!}\sum_{i=0}^m(-1)^iC_m^i(m-i)^n\] 把它带到要求的式子里去 \[\sum_{i=0}^n\sum_{j=0}^i…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 关于第二类斯特林数:https://www.cnblogs.com/Wuweizheng/p/8638858.html 关于这道题:https://blog.csdn.net/werkeytom_ftd/article/details/51909966 把 ∑i 移到后面那一步很不错,在后面就是个等比数列求和,就消去一个 O(n) 了: 注意等比数列求和公式当 q=1 时不适用. 代…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 第二类斯特林数展开式: \( S(i,j) = \frac{1}{j!} \sum\limits_{k=0}^{j}(-1)^{k}C_{j}^{k}(j-k)^{i} \) 大概是容斥枚举空的盒子个数.https://www.cnblogs.com/gzy-cjoier/p/8426987.html 在这道题里,先把 j 提到前面,再把组合数展开,推一推式子发现 j 之后的那部分是…
传送门 题意: 求 \[ f(n)=\sum_{i=0}^n\sum_{j=0}^i\begin{Bmatrix} i \\ j \end{Bmatrix}2^jj! \] 思路: 直接将第二类斯特林数展开有: \[ \begin{aligned} f(n)=&\sum_{i=0}^n\sum_{j=0}^n2^j\sum_{k=0}^{j}(-1)^k{j\choose k}(j-k)^{i}\\ =&\sum_{i=0}^n\sum_{j=0}^n2^jj!\sum_{k=0}^j\f…