抽样分布(3) F分布】的更多相关文章

定义 设U~χ2(n1), V~χ2(n2),且U,V相互独立,则称随机变量 服从自由度为(n1,n2)的F分布,记为F~F(n1,n2),其中n1叫做第一自由度,n2叫做第二自由度. F分布的概率密度为 F(n1,n2)分布的性质 设U~χ2(n1), V~χ2(n2),且U,V相互独立 F分布的分位点 对于一个数α(0<α<1),求数α使得概率P{F>c}=α 这个点c称为F分布的上α分位点,记为F分布的上α分位点.记为Fα(n1,n2) 对于不同的α,n1,n2,F(n1,n2)分…
定义:设X1服从自由度为m的χ2分布,X2服从自由度为n的χ2分布,且X1.X2相互独立,则称变量F=(X1/m)/(X2/n)所服从的分布为F分布,其中第一自由度为m,第二自由度为n.[1] F分布:设X.Y为两个独立的随机变量,X服从自由度为n的卡方分布,Y服从自由度为m的卡方分布,这两个独立的卡方分布除以各自的自由度以后的比率服从F分布.即:…
T分布:温良宽厚 本文由“医学统计分析精粹”小编“Hiu”原创完成,文章采用知识共享Attribution-NonCommercial-NoDerivatives 4.0国际许可协议(http://creativecommons.org/licenses/by-nc-nd/4.0/)进行许可,转载署名需附带本号二维码,不可用于商业用途,不允许任何修改,任何谬误建议,请直接反馈给原作者,谢谢合作! 命名与源起 “t”,是伟大的Fisher为之取的名字.Fisher最早将这一分布命名为“Studen…
Z就是正态分布,X^2分布是一个正态分布的平方,t分布是一个正态分布除以(一个X^2分布除以它的自由度然后开根号),F分布是两个卡方分布分布除以他们各自的自由度再相除 比如X是一个Z分布,Y(n)=X1^2+X2^2+……+Xn^2,这里每个Xn都是一个Z分布,t(n)=X/根号(Y/n),F(m,n)=(Y1/m)/(Y2/N) 各个分布的应用如下:方差已知情况下求均值是Z检验.方差未知求均值是t检验(样本标准差s代替总体标准差R,由样本平均数推断总体平均数)均值方差都未知求方差是X^2检验两…
今天看到一篇不错的博文,有感,记录下来,相对来说讲到了本质,也很容易理解.https://www.cnblogs.com/think-and-do/p/6509239.html 首先,老生常谈,还是那三大分布 T,卡方,F,(正态不是三大) T是厚尾的,对小样本量做检验,对于样本难获得的领域很有用,比如医药,生物,前面写过一个关于T检验的记录. 卡方检验用来做独立性检验和符合某个标准分布(正态检验) n个相互独立的随机变量服从正态分布,他们的平方和构成一个新的随机变量,服从卡方分布,n为自由度.…
使用Excel绘制F分布概率密度函数图表 利用Excel绘制t分布的概率密度函数的相同方式,可以绘制F分布的概率密度函数图表. F分布的概率密度函数如下图所示: 其中:μ为分子自由度,ν为分母自由度 Γ为伽马函数的的符号 由于Excel没有求F分布的概率密度函数可用,但是F分布中涉及到GAMMALN()函数,而excel是提供GAMMALN()函数的,所以我们可以使用excel中的GAMMALN()函数的运算来计算得到F分布的概率密度函数.(可参见[附录]) 经转换后上述公式为: F(X,df1…
应用统计学 推断统计需要样本形容总体,就要有统计量.注意必须总体是正态分布,否则统计量的分布不能得到.卡方分布和t分布只要样本大于30都近似于正态分布. t分布和F分布推导及应用(图): 总体比例是π,样本比例是p比例可用于计算患病率.近似就是均值和方差不发生改变,但是分布形式改变了,其实形状没发生改变.Eg:大样本时,二项分布近似于正态分布: 无偏性利用样本一阶矩.有效性利用样本二阶矩,可看出平均数比中位数更有效.相合性利用样本三阶矩,一般出现统计量都符合. 点估计是直接计算样本均值和方差不需…
在之前的十篇文章中,我们用了九篇文章的篇幅讨论了点估计的相关知识,现在来稍作回顾. 首先,我们讨论了正态分布两个参数--均值.方差的点估计,给出了它们的分布信息,并指出它们是相互独立的:然后,我们讨论到其他的分布族,介绍了点估计的评判标准--无偏性.相合性.有效性:之后,我们基于无偏性和相合性的讨论给出了常用分布的参数点估计,并介绍了两种常用于寻找点估计量的方法--矩法与极大似然法:最后,我们对点估计的有效性进行了讨论,给出了一些验证.寻找UMVUE的方法,并介绍了CR不等式,给出了无偏估计效率…
定义 t分布 设X ~ N(0,1),Y ~ χ2(n),且X,Y相互独立,则称随机变量 服从自由度为n的t分布(学生氏分布) 记为 t~t(n),其概率密度为 由于tn(x)是偶函数,其图形关于y轴对称.当n趋于无穷大时,t分布以标准正态分布N(0,1)为极限分布.也就是说t分布当n~∞时,tn(x)趋近于标准正态分布的表达式.而当n比较小的时候,t分布和标准正太分布的差距就比较大. t分布的应用 t分布的分位点 对于一个数α(<0α<1),怎么求数c使得概率 P{t>c}=α?这个点…
请参考: https://www.cnblogs.com/think-and-do/p/6509239.html…