MapReduce之Reduce Join】的更多相关文章

MapReduce Join 对两份数据data1和data2进行关键词连接是一个很通用的问题,如果数据量比较小,可以在内存中完成连接. 如果数据量比较大,在内存进行连接操会发生OOM.mapreduce join可以用来解决大数据的连接. 1 思路 1.1 reduce join 在map阶段, 把关键字作为key输出,并在value中标记出数据是来自data1还是data2.因为在shuffle阶段已经自然按key分组,reduce阶段,判断每一个value是来自data1还是data2,在…
一 介绍 Reduce Join其主要思想如下: 在map阶段,map函数同时读取两个文件File1和File2,为了区分两种来源的key/value数据对,对每条数据打一个标签(tag), 比如:tag=0表示来自文件File1,tag=2表示来自文件File2.即:map阶段的主要任务是对不同文件中的数据打标签.在reduce阶段,reduce函数获取key相同的来自File1和File2文件的value list, 然后对于同一个key,对File1和File2中的数据进行join(笛卡尔…
在关系型数据库中 Join 是非常常见的操作,各种优化手段已经到了极致.在海量数据的环境下,不可避免的也会碰到这种类型的需求, 例如在数据分析时需要连接从不同的数据源中获取到数据.不同于传统的单机模式,在分布式存储下采用 MapReduce 编程模型,也有相应的处理措施和优化方法. 我们先简要地描述待解决的问题.假设有两个数据集:气象站数据库和天气记录数据库,并考虑如何合二为一.一个典型的查询是:输出气象站的历史信息,同时各行记录也包含气象站的元数据信息. 一.Reduce Join 在Reud…
1. 简单介绍 reduce side  join是全部join中用时最长的一种join,可是这样的方法可以适用内连接.left外连接.right外连接.full外连接和反连接等全部的join方式.reduce side  join不仅能够对小数据进行join,也能够对大数据进行join,可是大数据会占用大量的集群内部网络IO,由于全部数据终于要写入到reduce端进行join. 假设要做join的数据量很大的话.就不得不用reduce join了. 2. 适用场景 -join的两部分数据量很大…
MapReduce Join 对两份数据data1和data2进行关键词连接是一个很通用的问题,如果数据量比较小,可以在内存中完成连接. 如果数据量比较大,在内存进行连接操会发生OOM.mapreduce join可以用来解决大数据的连接. 1 思路 1.1 reduce join 在map阶段, 把关键字作为key输出,并在value中标记出数据是来自data1还是data2.因为在shuffle阶段已经自然按key分组,reduce阶段,判断每一个value是来自data1还是data2,在…
本文引自吴超博客 实现原理 1.在Reudce端进行连接. 在Reudce端进行连接是MapReduce框架进行表之间join操作最为常见的模式,其具体的实现原理如下: Map端的主要工作:为来自不同表(文件)的key/value对打标签以区别不同来源的记录.然后用连接字段作为key,其余部分和新加的标志作为value,最后进行输出. reduce端的主要工作:在reduce端以连接字段作为key的分组已经完成,我们只需要在每一个分组当中将那些来源于不同文件的记录(在map阶段已经打标志)分开,…
一. MR中的join的两种方式: 1.reduce side join(面试题) reduce side join是一种最简单的join方式,其主要思想如下: 在map阶段,map函数同时读取两个文件File1和File2,为了区分两种来源的key/value对,对每条数据打一个标签(tag),比如:tag=1表示来自文件File1,tag=2表示来自文件File2.即:map阶段的主要任务是对不同文件中的数据打标签,在shuffle阶段已经自然按key分组. 在reduce阶段,reduce…
一 介绍 之所以存在Reduce Join,是因为在map阶段不能获取所有需要的join字段,即:同一个key对应的字段可能位于不同map中.Reduce side join是非常低效的,因为shuffle阶段要进行大量的数据传输. Map Join是针对以下场景进行的优化:两个待连接表中,有一个表非常大,而另一个表非常小,以至于小表可以直接存放到内存中.这样,我们可以将小表复制多份,让每个map task内存中存在一份(比如存放到hash table中),然后只扫描大表:对于大表中的每一条记录…
一.背景 MapReduce提供了表连接操作其中包括Map端join.Reduce端join还有半连接,现在我们要讨论的是Map端join,Map端join是指数据到达map处理函数之前进行合并的,效率要远远高于Reduce端join,因为Reduce端join是把所有的数据都经过Shuffle,非常消耗资源. 二.具体join 1.join的例子     比如我们有两个文件,分别存储 订单信息:products.txt,和 商品信息:orders.txt ,详细数据如下: products.t…
之前有一段时间.我们的hadoop2.4集群压力非常大.导致提交的job出现大量的reduce被kill掉.同样的job执行时间比在hadoop0.20.203上面长了非常多.这个问题事实上是reduce 任务启动时机的问题,因为yarn中没有map slot和reduce slot的概念,且ResourceManager也不知道map task和reduce task之间的依赖关系,因此MRAppMaster自己须要设计资源申请策略以防止因reduce task过早启动照成资源利用率低下和ma…