Batch Normalization 批量标准化】的更多相关文章

本篇博文转自:https://www.cnblogs.com/guoyaohua/p/8724433.html Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性.虽然有些细节处理还解释不清其理论原因,但是实践证明好用才是真的好,别忘了DL从Hinton对深层网络做Pre-Train开始就是一个经验领先于理论分析的偏经验的一门学问.本文是对论文<Batch Normalization: Accelerating Deep Network Train…
转自:https://www.cnblogs.com/guoyaohua/p/8724433.html 郭耀华's Blog 欲穷千里目,更上一层楼项目主页:https://github.com/guoyaohua/ 博客园 首页 新随笔 联系 订阅 管理 [深度学习]深入理解Batch Normalization批标准化   这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结得出.…
  全文转载于郭耀华-[深度学习]深入理解Batch Normalization批标准化:   文章链接Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift:发表于2015的ICML: 这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结得出.   Bat…
for i in range(N_HIDDEN): # build hidden layers and BN layers input_size = 1 if i == 0 else 10 fc = nn.Linear(input_size, 10) setattr(self, 'fc%i' % i, fc) # IMPORTANT set layer to the Module self._set_init(fc) # parameters initialization self.fcs.ap…
这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结得出. Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性.虽然有些细节处理还解释不清其理论原因,但是实践证明好用才是真的好,别忘了DL从Hinton对深层网络做Pre-Train开始就是一个经验领先于理论分析的偏经验的一门学问.本文是对论文<Batch Normalization: A…
文章转载自:http://www.cnblogs.com/guoyaohua/p/8724433.html Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性.虽然有些细节处理还解释不清其理论原因,但是实践证明好用才是真的好,别忘了DL从Hinton对深层网络做Pre-Train开始就是一个经验领先于理论分析的偏经验的一门学问.本文是对论文<Batch Normalization: Accelerating Deep Network Trainin…
BN的深度理解:https://www.cnblogs.com/guoyaohua/p/8724433.html BN: BN的意义:在激活函数之前将输入归一化到高斯分布,控制到激活函数的敏感区域,避免激活函数的梯度饱和导致梯度消失,增加学习效率 (1)加速收敛(2)控制过拟合,可以少用或不用Dropout和正则(3)降低网络对初始化权重不敏感(4)允许使用较大的学习率 上图中,左边的例子,损失函数对权重微小的变动(分类器旋转偏移)较为敏感,归一化后损失函数对权重微小的变动不那么敏感了 ,让网络…
BN的基本思想,其提出是解决梯度消失的问题的某一方法. 在深度神经网络做非线性变换前的激活输入值(x=wu+b,u是输入),当层数越深的时候,输入值的分布就会发生偏移,梯度出现消失的情况, 一般是整体分布逐渐往函数的取值区间的上下限靠拢,而这个时候非线性函数的梯度就会发生消失,所以训练收敛变慢. BN就是通过强行把每层神经网络任意神经元的输入值的分布变成标准化的正太分布,这样就会使激活输入值落入函数比较敏感的区域,输入小 的变化也会产生比较大的损失函数的变化,梯度也变大,就避免了梯度消失的问题,…
在机器学习领域中,有一个重要的假设:独立同分布假设,也就是假设训练数据和测试数据是满足相同分布的,否则在训练集上学习到的模型在测试集上的表现会比较差.而在深层神经网络的训练中,当中间神经层的前一层参数发生改变时,该层的输入分布也会发生改变,也就是存在内部协变量偏移问题(Internal Covariate Shift),从而造成神经层的梯度消失,模型收敛过慢的问题. Batch Normalization(BN,批量标准化)就是一种解决内部协变量偏移问题的方法,它通过对神经网络的中间层进行逐层归…
Inception V2网络中的代表是加入了BN(Batch Normalization)层,并且使用 2个 3*3卷积替代 1个5*5卷积的改进版,如下图所示: 其特点如下: 学习VGG用2个 3*3卷积代替 Inception V1中的 5*5大卷积.这样做在减少参数(3*3*2+2 –> 5*5+1)的同时可以建立更多的非线性变换,增强网络对特征的学习能力.如下图所示,2个 3*3卷积的效果与一个 5*5 卷积的效果类似: 在 Inception V1中加入BN层,以减少 Internal…