OpenCV 金字塔图像缩放】的更多相关文章

// image_pyramid.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <string> #include <iostream> using namespace std; #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/highgui/highgui.hpp" #include <ma…
x, y = img_.shape[0:2] img_ = cv2.resize(img_, (int(y/2), int(x/2))) 实现图像长宽缩小为原来的一半…
OpenCV:图片缩放和图像金字塔 对图像进行缩放的最简单方法当然是调用resize函数啦! resize函数可以将源图像精确地转化为指定尺寸的目标图像. 要缩小图像,一般推荐使用CV_INETR_AREA来插值:若要放大图像,推荐使用CV_INTER_LINEAR. 现在说说调用方式 第一种,规定好你要图片的尺寸,就是你填入你要的图片的长和高. #include<opencv2\opencv.hpp> #include<opencv2\highgui\highgui.hpp> u…
opencv提供了一种图像缩放函数 功能:实现对输入图像缩放到指定大小 函数原型: void cv::resize ( InputArray src, OutputArray dst, Size dsize, , , int interpolation = INTER_LINEAR ) 函数参数: InputArray src:输入图像,可以是Mat类型 OutputArray dst:输出图像,其尺寸由第三个参数dsize(如果dsize不为0),当dsize为0,输出图像的尺寸由src.si…
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 图像的几何变换是在不改变图像内容的前提下对图像像素进行空间几何变换,主要包括了图像的平移变换,缩放,旋转,翻转,镜像变换等. 1,几何变换的基本概念 1.1 坐标映射关系 图像的几何变换改变了像素的空间位置,建立一种原图像像素与变换后图像像素之间的映射关系,通过这种映射关系能够实现下面两种计算: 1,原…
图像缩放是一种比较简单的图像处理操作,这里给出opencv中的代码, opencv的版本C语言接口 int resize_c() { const char *pstrImageName = "lena.jpg"; const char *pstrSaveImageName = "lena缩放图.jpg"; const char *pstrWindowsSrcTitle = "原图"; const char *pstrWindowsDstTitle…
http://blog.sina.com.cn/s/blog_74a459380101r0yx.html opencv2 矩阵方式 resize图像缩放代码(转载) (2014-05-16 09:55:35) 转载▼   分类: Opencv_Function 最近学习opencv的时候遇到的一些技术问题,拿出来分享一下.opencv1和opencv2最大的区别就是c++支持,这使得网上有些资料是opencv1的c语言写的,而有些人喜欢c++,当然接口函数也就不同了.下面是一个c++的openc…
opencv3 图像处理 之 图像缩放( python与c++实现 ) 一. 主要函数介绍 1) 图像大小变换 Resize () 原型: void Resize(const CvArr* src,CvArr* dst,intinterpolation=CV_INTER_LINEAR); 说明: src 表示输入图像. dst表示输出图像. intinterpolation插值方法,有以下四种: CV_INTER_NN - 最近邻插值, CV_INTER_LINEAR - 双线性插值 (缺省值)…
最近在查找有关图像缩放之类的算法,因工作中需要用到诸如此类的图像处理算法就在网上了解了一下相关算法,以及其原理,并用Python实现,且亲自验证过,在次与大家分享. 声明:本文代码示例针对的是planar格式的YUV数据,且只对Y分量做了缩放,因为平常工作中接触较多的是YUV格式的黑白图片,UV分量都是固定的0x80,所以针对UV分量没有做缩放操作. 先大概讲一下图像所方的原理,假设缩放之前的图像为src_img,分辨率为src_w*src_h,缩放之后的图像为dst_img,分辨率为dst_w…
图像几何变换(缩放.旋转)中的常用的插值算法 在图像几何变换的过程中,常用的插值方法有最邻近插值(近邻取样法).双线性内插值和三次卷积法. 最邻近插值: 这是一种最为简单的插值方法,在图像中最小的单位就是单个像素,但是在旋转个缩放的过程中如果出现了小数,那么就对这个浮点坐标进行简单的取整,得到一个整数型坐标,这个整数型坐标对应的像素值就是目标像素的像素值.取整的方式就是:取浮点坐标最邻近的左上角的整数点. 举个例子: 3*3的灰度图像,其每一个像素点的灰度如下所示 我们要通过缩放,将它变成一个4…