[BZOJ]1093 最大半连通子图(ZJOI2007)】的更多相关文章

挺有意思的一道图论. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:∀u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'⊆V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图.给定一个有向图G,请求出G的最大半连…
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,以及不同的最大半连通子图…
1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 2767  Solved: 1095[Submit][Status][Discuss] Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'?V,E'是E中所有跟V'…
缩点求最长链. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<set> #include<queue> #define maxv 100500 #define maxe 1000500 using namespace std; struct edge { int u,v,nxt; }e[maxe]; struct p…
题目 大意: 缩点后转为求最长链的长度和最长链的个数 思路: 看懂题就会做系列 长度和个数都可以拓扑排序后DP求得 毕竟是2007年的题 代码: 如下 #include <cstdio> #include <iostream> #include <memory.h> #define r(x) x=read() #define MAXX 100005 #define MIN(a,b) (a<b?a:b) #define MAX(a,b) (a>b?a:b) #…
题目大意 题目是图片形式的,就简要说下题意算了 一个有向图 G=(V, E) 称为半连通的(Semi-Connected),如果满足图中任意两点 u v,存在一条从 u 到 v 的路径或者从 v 到 u 的路径 给一个有向图(n 个点,m 条边),求出她的最大半连通子图中所包含的点数,以及这样的最大半连通子图有多少个(要求模上一个给定的数 x) 对于20%的数据, N ≤18: 对于60%的数据, N ≤10000: 对于100%的数据, N ≤100000, M ≤1000000: 对于100…
1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1986  Solved: 802[Submit][Status][Discuss] Description Input 第一行包含两个整数N,M,X.N,M分别表示图G的点数与边数,X的意义如上文所述.接下来M行,每行两个正整数a, b,表示一条有向边(a, b).图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次. Outpu…
1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 2286  Solved: 897[Submit][Status][Discuss] Description Input 第一行包含两个整数N,M,X.N,M分别表示图G的点数与边数,X的意义如上文所述.接下来M行,每行两个正整数a, b,表示一条有向边(a, b).图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次. Outpu…
WA了好多次... 先tarjan缩点, 然后题意就是求DAG上的一条最长链. dp(u) = max{dp(v)} + totu, edge(u,v)存在. totu是scc(u)的结点数. 其实就是记忆化搜一下...重边就用set判一下 ------------------------------------------------------------------------------------------- #include<cstdio> #include<cstring…
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边, 则称G'是G的一个导出子图.若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图.若G'是G所有半连通子图 中包含节点数最多的,则称G'是G的最大半连通子图.给定一个有向图G,请求出G的最大半连通子图拥有的节点…