Gaussian Mixture Models and the EM algorithm汇总 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 漫谈 Clustering (3): Gaussian Mixture Model « Free Mind http://blog.pluskid.org/?p=39 2. Regularized Gaussian Covariance Estimation http://freemind.pluski…
原理请观良心视频:机器学习课程 Expectation Maximisation Expectation-maximization is a well-founded statistical algorithm to get around this problem by an iterative process. First one assumes random components (randomly centered on data points, learned from k-means,…
不错的草稿.但进一步处理是必然的,也是难点所在. Extended: 固定摄像头,采用Gaussian mixture models对背景建模. OpenCV 中实现了两个版本的高斯混合背景/前景分割方法(Gaussian Mixture-based Background/Foreground Segmentation Algorithm),调用接口很明朗,效果也很好. 参见:[Scikit-learn] 2.1 Gaussian mixture models & EM [1] 有趣的应用 之…
最重要的一点是:Bayesian GMM为什么拟合的更好? PRML 这段文字做了解释: Ref: http://freemind.pluskid.org/machine-learning/deciding-the-number-of-clusterings/ 链接中提到了一些其他的无监督聚类. From: http://scikit-learn.org/stable/modules/mixture.html#variational-bayesian-gaussian-mixture Due t…
聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类(序)----监督学习与无监督学习 聚类(1)----混合高斯模型 Gaussian Mixture Model 聚类(2)----层次聚类 Hierarchical Clustering 聚类(3)----谱聚类 Spectral Clustering -----------------------…
网易公开课,第12,13课 notes,7a, 7b,8 从这章开始,介绍无监督的算法 对于无监督,当然首先想到k means, 最典型也最简单,有需要直接看7a的讲义   Mixtures of Gaussians 如果要理解Mixtures of Gaussians,那先回去复习一下Gaussians Discriminant Analysis,高斯判别分析 首先高斯判别分析是生成算法, 所以不会直接拟合p(y|x), 而是拟合p(x|y)p(y), 即p(x,y) p(y)符合伯努力分布,…
一.背景知识 1. Discriminant  Learning Algorithms(判别式方法) and Generative Learning Algorithms(生成式方法) 现在常见的模式识别方法有两种,一种是判别式方法:一种是生成式方法.可以这样理解生成式方法主要是数据是如何生成的,从统计学的角度而言就是模拟数据的分布distribution;而判别式方法,不管数据是如何生成而是通过数据内在的差异直接进行分类或者回归.举个例子你现有的task是去识别一段语音属于哪一种语言.那么生成…
k-means应该是原来级别的聚类方法了,这整理下一个使用后验概率准确评测其精度的方法—高斯混合模型. 我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussian Mixture Model (GMM).事实上,GMM 和 k-means 很像,不过 GMM 是学习出一些概率密度函数来(所以 GMM 除了用在 clustering 上之外,还经常被用于 density estimation ),简单地说,k-means 的结果是每个数据点被 assign…
上一次我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussian Mixture Model (GMM).事实上,GMM 和 k-means 很像,不过 GMM 是学习出一些概率密度函数来(所以 GMM 除了用在 clustering 上之外,还经常被用于 density estimation ),简单地说,k-means 的结果是每个数据点被 assign 到其中某一个 cluster 了,而 GMM 则给出这些数据点被 assign 到每个 clust…
从几何上讲,单高斯分布模型在二维空间应该近似于椭圆,在三维空间上近似于椭球.遗憾的是在很多分类问题中,属于同一类别的样本点并不满足“椭圆”分布的特性.这就引入了高斯混合模型.——可以认为是基本假设! 高斯混合模型Gaussian Mixture Model (GMM) 摘自:http://www.infocool.net/kb/Spark/201609/193351.html 由于本文写的不g够完整详细,给出一个学习链接:       http://www.cnblogs.com/CBDocto…