Boosting(提升方法)之XGBoost】的更多相关文章

XGBoost是一个机器学习味道非常浓厚的模型,在数学上非常规范,运用正则化.L2范数.二阶梯度.泰勒公式和分布式计算方法,对GBDT等提升树模型进行优化,不仅能处理更大规模的数据,而且运行效率特别高.看完了XGBoost的原理后,我只能借用邓紫棋在<我是歌手>舞台上唱<喜欢你>时说的那句话:“太漂亮啦”,来表达我内心的感受. 怎么学习XGBoost这个模型呢?我是沿着 “ 决策树(CART)—AdaBoost—GBDT—XGBoost ” 这样的路线来学习的,所幸这正是比较顺的一…
集成学习(ensemble learning)通过构建并结合多个个体学习器来完成学习任务,也被称为基于委员会的学习. 集成学习构建多个个体学习器时分两种情况:一种情况是所有的个体学习器都是同一种类型的学习算法,比如都是决策树,或者都是神经网络.这样的集成是“同质”的,同质集成中的个体学习器称为“基学习器”,相应的算法称为“基学习算法”:另一种情况是集成学习中包含的个体学习器是不同类型的,比如同时包含了决策树或者神经网络算法,那么这样的集成是“异质”的,这时的个体学习器不能称为“基学习器”. 那么…
一.GBDT的通俗理解 提升方法采用的是加法模型和前向分步算法来解决分类和回归问题,而以决策树作为基函数的提升方法称为提升树(boosting tree).GBDT(Gradient Boosting Decision Tree)就是提升树算法的一种,它使用的基学习器是CART(分类和回归树),且是CART中的回归树. GBDT是一种迭代的决策树算法,通过多轮迭代,每轮学习都在上一轮训练的残差(用损失函数的负梯度来替代)基础上进行训练.在回归问题中,每轮迭代产生一棵CART回归树,迭代结束时将得…
提升方法(boosting)详解 提升方法(boosting)是一种常用的统计学习方法,应用广泛且有效.在分类问题中,它通过改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能. 本章首先介绍提升方法的思路和代表性的提升算法AdaBoost,然后通过训练误差分析探讨AdaBoost为什么能够提高学习精度,并且从前向分布加法模型的角度解释AdaBoost,最后叙述提升方法更具体的事例——提升术(boosting tree).AdaBoost算法是1995年由Freund和…
组合方法: 我们分类中用到非常多经典分类算法如:SVM.logistic 等,我们非常自然的想到一个方法.我们是否可以整合多个算法优势到解决某一个特定分类问题中去,答案是肯定的! 通过聚合多个分类器的预測来提高分类的准确率.这样的技术称为组合方法(ensemble method) .组合方法由训练数据构建一组基分类器,然后通过对每一个基分类器的预測进行权重控制来进行分类. 考虑25个二元分类组合,每一个分类误差是0.35 .假设全部基分类器都是相互独立的(即误差是不相关的),则在超过一半的基分类…
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8"> <title></title> <script type="text/javascript"> var a = 100; function t() { alert(a); var a = 10; } t(); //输出结果为undefine…
AdaBoost算法内容来自<统计学习与方法>李航,<机器学习>周志华,以及<机器学习实战>Peter HarringTon,相互学习,不足之处请大家多多指教! 提升算法是将弱学习算法提升为强学习算法的统计学习方法,在分类学习中,提升方法通过反复修改训练数据的权值分布,构建一系列基本的基本分类器,并将这些基本的分类器线性组合,构成一个强分类器.代表的方法是AdaBoost算法. 本卷大纲为: 1 提升方法AdaBoost算法2 AdaBoost算法解释3 提升树4 总结…
xgboost的可以参考:https://xgboost.readthedocs.io/en/latest/gpu/index.html 整体看加速5-6倍的样子. Gradient Boosting, Decision Trees and XGBoost with CUDA By Rory Mitchell | September 11, 2017  Tags: CUDA, Gradient Boosting, machine learning and AI, XGBoost   Gradie…
提升方法--AdaBoost 前言 AdaBoost是最经典的提升方法,所谓的提升方法就是一系列弱分类器(分类效果只比随机预测好一点)经过组合提升最后的预测效果.而AdaBoost提升方法是在每次训练弱分类器的时候,提升上一个弱分类器误分类的数据的比重来让本次训练的分类器能够弥补上次分类器的不足.AdaBoost的概念和算法还是很好理解的,而且通过书上的例题可以很明显的感觉用一个很简单(计算量很小)的分类器,经过提升后的最终分类器的效果很好,本篇还是着重实现部分,并且将我在实现时候遇到的问题和思…
提升方法通过改变训练样本的权重,学习多个分类器(弱分类器/基分类器)并将这些分类器进行线性组合,提高分类的性能. AdaBoost算法的特点是不改变所给的训练数据,而不断改变训练数据权值的分布,使得训练数据在基本分类器的学习中起不同的作用.通过迭代每次学习一个基分类器,在迭代过程中提高那些被前一轮分类器错误分类数据的权值,降低那些被正确分类的数据的权值,最后将基分类器的线性组合作为强分类器.其中给分类误差率小的基分类器以大的权值,给分类误差率大的基分类器以小的权值,能不断以指数速率减小训练误差,…