Feature Preprocessing on Kaggle】的更多相关文章

刚入手data science, 想着自己玩一玩kaggle,玩了新手Titanic和House Price的 项目, 觉得基本的baseline还是可以写出来,但是具体到一些细节,以至于到能拿到的出手的成绩还是需要理论分析的. 本文旨在介绍kaggle比赛到各种原理与技巧,当然一切源自于coursera,由于课程都是英文的,且都比较好理解,这里直接使用英文 Reference How to Win a Data Science Competition: Learn from Top Kaggl…
本文记录笔者在观看Coursera上国立经济大学HLE的课程 How to win a data science competetion中的收获,和大家分享.课程的这门课的讲授人是Kaggle的大牛,内容详实,需要一定的python和机器学习基础.笔者只记录了一部分,许多细节都被省略了,详细内容各位看官还请移步课程链接 1. Week1 Feature Preprocessing 特征预处理 数值型 Numerical Tree-Based 模型不依赖于归一化(scaling),Non-tree…
有视频:https://www.youtube.com/watch?v=BFaadIqWlAg 有代码:https://github.com/jem1031/pandas-pipelines-custom-transformers 幼儿级模型 一.模型训练 简单的preprocessing后,仅使用一个“属性”做预测,看看结果如何? #%% import pandas as pd import numpy as np import os from sklearn.model_selection…
Ref: [Feature] Preprocessing tutorial 主要是 “无量纲化” 之前的部分. 加载数据 一.大数据源 http://archive.ics.uci.edu/ml/http://aws.amazon.com/publicdatasets/http://www.kaggle.com/http://www.kdnuggets.com/datasets/index.html 二.初步查看 了解需求 Swipejobs is all about matching Jobs…
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition Reference This is the class and function reference of scikit-learn. Please refer to the full user guide for further details, as the class and function raw specifications…
SVM是Support Vector Machine的缩写,中文叫支持向量机,通过它可以对样本数据进行分类.以股票为例,SVM能根据若干特征样本数据,把待预测的目标结果划分成“涨”和”跌”两种,从而实现预测股票涨跌的效果. 1 通过简单案例了解SVM的分类作用 在Sklearn库里,封装了SVM分类的相关方法,也就是说,我们无需了解其中复杂的算法,即可用它实现基于SVM的分类.通过如下SimpleSVMDemo.py案例,我们来看下通过SVM库实现分类的做法,以及相关方法的调用方式. 1 #!/…
from:http://analyticsbot.ml/2016/10/machine-learning-pre-processing-features/ Machine Learning : Pre-processing features October 21, 2016 I am participating in this Kaggle competition. It is a prediction problem contest. The problem statement is: How…
正文:14pt 代码:15px 1 初探数据 先看看我们的数据,长什么样吧.在Data下我们train.csv和test.csv两个文件,分别存着官方给的训练和测试数据. import pandas as pd #数据分析 import numpy as np #科学计算 from pandas import Series,DataFrame data_train = pd.read_csv("/Users/Hanxiaoyang/Titanic_data/Train.csv") da…
Titanic是kaggle上一个练手的比赛,kaggle平台提供一部分人的特征,以及是否遇难,目的是预测另一部分人是否遇难.目前抽工作之余,断断续续弄了点,成绩为0.79426.在这个比赛过程中,接触并了解了一些数据挖掘比赛的基本流程,现记录一下. 1. 分析数据 因为数据量比较小,train有800多条数据,test有400多条数据,因此这里用了execl的数据透视表分析. 同时python提供pandas库,可以很好的分析数据. 2. 缺失值填充 关于Age,Fare,Embarked三个…
完整代码见kaggle kernel 或 NbViewer 比赛页面:https://www.kaggle.com/c/titanic Titanic大概是kaggle上最受欢迎的项目了,有7000多支队伍参加,多年来诞生了无数关于该比赛的经验分享.正是由于前人们的无私奉献,我才能无痛完成本篇. 事实上kaggle上的很多kernel都聚焦于某个特定的层面(比如提取某个不为人知的特征.使用超复杂的算法.专做EDA画图之类的),当然因为这些作者本身大都是大神级别的,所以平日里喜欢钻研一些奇淫巧技.…