当$k\le 3$,这是一个经典的问题 设所有矩形左下角横纵坐标的最大值为$(x_{1},y_{1})$,右上角横纵坐标的最小值为$(x_{2},y_{2})$,那么必然存在一组合法解满足其中一点为$(x_{1}/x_{2},y_{1}/y_{2})$,不断递归即可,时间复杂度为$o(4^{k}n)$ 当$k=4$,我们可以在四条边界线上各放一点来完成 如果一个矩形完全覆盖了一条边(即覆盖了3或4条边,注意覆盖和完全覆盖不同),那么一定含有一个点,因此这类矩形的限制可以删掉 对于剩下的矩形,其覆…