为了方便,令$a_{i,j}$的下标范围为$[0,n]$和$[0,m]$,$b_{i,j}$的下标范围为$[1,n]$和$[1,m]$ 当确定$a_{i,0}$和$a_{0,j}$后,即可通过$b_{i,j}$来确定$a_{i,j}$,具体的有$$a_{i,j}=(-1)^{i+j}\sum_{1\le x\le i,1\le y\le j}(-1)^{x+y}b_{x,y}+(-1)^{j}a_{i,0}+(-1)^{i}a_{0,j}-(-1)^{i+j}a_{0,0}$$由于在$i=0$或…