Codeforces 题面传送门 & 洛谷题面传送门 一种换根 dp 的做法. 首先碰到这类题目,我们很明显不能真的把图 \(G\) 建出来,因此我们需要观察一下图 \(G\) 有哪些性质.很明显我们可以把它看作 \(T_1,T_2\) 上分别有一个标记,每次可以将 \(T_1,T_2\) 上的某个标记沿着某条边移动一步,问 \(k\) 步之后标记刚好回到原位的方案数是多少. 显然两棵树是独立的,因此可以分开来考虑,我们记 \(dp1_{i,j}\) 表示 \(T_1\) 中从 \(i\) 开始…
Codeforces 题面传送门 & 洛谷题面传送门 换根 dp 好题. 为啥没人做/yiw 首先 \(n\) 为奇数时答案显然为 \(0\),证明显然.接下来我们着重探讨 \(n\) 是偶数的情况. 考虑一棵树存在完美匹配的等价证明:我们考察每一条边,如果删掉该条边后两个连通块的大小都是奇数,那么显然我们如果贪心地对两个连通块进行二分图完美匹配,如果还剩至少三个点没被匹配,那么显然原图不存在二分图完美匹配,否则我们肯定会剩下该连通块的根节点,也就是这条边的一个端点.换句话,如果原图存在二分图完…
题意 给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值. \(n\leq 5\times 10^5\) . 分析 记断掉一条边之后两棵树的直径为 \(A,B\) ,最长直径为 \(A+B+1\) 最短为 \(\max\{A\ ,B\ ,\lceil \frac{A}{2}\rceil+\lceil \frac{B}{2} \rceil +1\}\) . 维护每个点不同子树的前3长链和向上的最长链.不同子树的前2长路径和向上子树的最长路径. 这样…
传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p]表示把根换成ppp时整棵树的答案. 于是有g[v]=f[v]+min(g[p]−min(e[i].c,f[v]),e[i].c)g[v]=f[v]+min(g[p]-min(e[i].c,f[v]),e[i].c)g[v]=f[v]+min(g[p]−min(e[i].c,f[v]),e[i].c…
P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公路相互可达,但是通过一条高速公路需要收取一定的交通费用.小明对这个地区深入研究后,觉得这个地区的交通费用太贵.小明想彻底改造这个地区,但是由于上司给他的资源有限,因而小明现在只能对一条高速公路进行改造,改造的方式就是去掉一条高速公路,并且重新修建一条一样的高速公路(即交通费用一样),使得这个地区的两个城市…
一道很好的换根dp题.考场上现场yy十分愉快 给定树,求每个点的到其它所有点的距离异或上m之后的值,n=100000,m<=16 只能线性复杂度求解,m又小得奇怪.或者带一个log像kx一样打一个线段树 我们可以发现,m小的话对距离很大的路径的影响也不会超过16. 那么变化的其实就是最后4个二进制位啊. 所以我们像普通的换根dp一样求出所有距离,在额外处理一下以p为端点的全部路径里路径长度%16之后的值为k的有多少个 设为bits2[k][p] 因为换根dp的主要思路是两遍dfs,第一次处理每个…
题意 ​ 题目链接:https://www.luogu.org/problem/P4827 ​ 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \(\displaystyle \sum_{i=1}^n{\rm dist}^k(i,j)\),其中 \(\rm{dist}\) 函数表示树上两点距离. ​ \(1 \leq n \leq 50000\) ​ \(1\leq k \leq 150\) 思路 ​ 看到求答案 \(k\) 次方的问题,应该联…
题目链接 传送门 题意 两个绝顶聪明的人在树上玩博弈,规则是轮流选择下一个要到达的点,每达到一个点时,先手和后手分别获得\(a_i,b_i\)(到达这个点时两个人都会获得)的权值,已经经过的点无法再次经过,直到无法移动则结束游戏,两人都想最大化自己的权值和减对手权值和,问先手减后手权值和最大是多少. 思路 换根\(DP\),和求树的直径有点类似. \(dp[i][j]\)表示在\(i\)这个结点状态为\(j\)时先手权值和减后手权值和最优是多少,\(j\)为偶数表示当前是先手,为奇数时为后手.…
题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 $\times 1$ )然后累加. 然而,直接求通电的概率不是很好求,所以可以求不通电的概率,然后 $1$ 减去这个就是通电的概率了~ 先假定以 $1$ 为根,令 $f[i]$ 表示仅考虑 $i$ 的子树及 $i$ 的影响时 $i$ 充不到电的概率. 则有: $f[i]=(1-q[i])\prod_…
题目传送门 题意: 给定一棵n个点的边权为0或1的树,一条合法的路径(x,y)(x≠y)满足,从x走到y,一旦经过边权为1的边,就不能再经过边权为0的边,求有多少边满足条件? 思路: 首先,这道题也可以用并查集的做法过,点这里 那换根dp怎么写呢? 设$f[u]$为以1为根,自下而上到$u$的末节点是1的合法路径数量,$g[u]$代表以1为根,自下而上到$v$末节点是0的合法路径数量,这个可以通过一遍dfs简单求解. 再设$nf[u]$和$ng[u]$代表以u为根的两种合法路径数量,进行换根df…