首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Solution -「LOCAL」割海成路之日
】的更多相关文章
Solution -「LOCAL」割海成路之日
\(\mathcal{Description}\) OurOJ. 给定 \(n\) 个点的一棵树,有 \(1,2,3\) 三种边权.一条简单有向路径 \((s,t)\) 合法,当且仅当走过一条权为 \(3\) 的边之后,只通过了权为 \(1\) 的边.\(m\) 次询问,每次询问给定 \(a,b,s,t\),表示将边 \((a,b)\) 的权 \(-1\)(若权已为 \(1\) 则不变),并询问 \(t\) 是否能走到 \(s\):有多少点能够走到 \(s\). \(n,m\le 3…
lfyzoj103 割海成路之日
问题描述 现在,摆在早苗面前的是一道简单题.只要解决了这道简单题,早苗就可以发动她现人神的能力了: 输出 \[1\ \mathrm{xor}\ 2\ \mathrm{xor} \cdots \mathrm{xor}\ n\] 输入格式 第一行是一个整数 \(T\),代表有 \(T\) 组数据. 下来 \(T\) 行,一行一个整数 \(n\). 输出格式 \(T\) 行,一行一个整数,是你的答案. 样例一 input 2 3 5 output 0 1 数据范围与约定 对于 \(30\%\) 的数据…
NOIP 模拟 $28\; \rm 割海成路之日$
题解 \(by\;zj\varphi\) 用两个集合分别表示 \(1\) 边联通块,\(1,2\) 边联通块 . \(\rm son_x\) 表示当前节点通过 \(3\) 类边能到的 \(2\) 联通块的数量,\(tw\) 表示当前节点 \(2\) 联通块的大小. 这些都可以预处理出来,最后在计算答案时不要忘了加上父亲的贡献. 最后因为并查集只有合并而没有拆开,所以复杂度为 \(\mathcal O\rm (nlogn)\). Code #include<bits/stdc++.h> #def…
Solution -「LOCAL」大括号树
\(\mathcal{Description}\) OurTeam & OurOJ. 给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) 的简单有向路径上的字符串成括号序列,记其正则匹配的子串个数为 \(\operatorname{ans}(u,v)\).求: \[\sum_{u=1}^n\sum_{v=1}^n\operatorname{ans}(u,v)\bmod998244353 \] \(n\le2\times10^5\). \(…
Solution -「LOCAL」Drainage System
\(\mathcal{Description}\) 合并果子,初始果子的权值在 \(1\sim n\) 之间,权值为 \(i\) 的有 \(a_i\) 个.每次可以挑 \(x\in[L,R]\) 个果子合并成一个,代价为所挑果子权值之和.求合并所有果子的最少代价.\(T\) 组数据. \(T\le10\),\(n,a_i\le10^5\),\(2\le L\le R\le\sum_{i=1}^na_i\). \(\mathcal{Solution}\) 把合并考虑成一棵树,树叉在 \…
Solution -「LOCAL」Burning Flowers
灼之花好评,条条生日快乐(假装现在 8.15)! \(\mathcal{Description}\) 给定一棵以 \(1\) 为根的树,第 \(i\) 个结点有颜色 \(c_i\) 和光亮值 \(l_i\),定义树的权值为: \[\sum_{\displaystyle u<v\land c_u=c_v\land\\\operatorname{LCA}(u,v)\not=u\land\operatorname{LCA}(u,v)\not=v}l_u\oplus l_v \] 现有 \(…
Solution -「LOCAL」舟游
\(\mathcal{Description}\) \(n\) 中卡牌,每种三张.对于一次 \(m\) 连抽,前 \(m-1\) 次抽到第 \(i\) 种的概率是 \(p_i\),第 \(m\) 次抽到第 \(i\) 种的概率是 \(q_i\).若抽到第 \(i\) 种,会等概率地得到三张卡牌中的一张.求得到所有 \(3n\) 张卡的期望 \(m\) 连抽次数.对 \(2000000011\) 取模. \(n\le6\),\(m\le64\). \(\mathcal{Solution}\…
Solution -「LOCAL」解析电车
\(\mathcal{Description}\) 给定 \(n\) 个点 \(m\) 条边的无向图,每条边形如 \((u,v,r)\),表示 \(u,v\) 之间有一条阻值为 \(r\Omega\) 的电阻.求 \(S\) 到 \(T\) 的等效电阻. \(n\le100\),\(m\le\frac{n(n-1)}2\). \(\mathcal{Solution}\) 欧姆定律:通过一段电路 \(AB\) 两端的电流为 \(\frac{\varphi_A-\varphi_B}{R_{A…
Solution -「LOCAL」二进制的世界
\(\mathcal{Description}\) OurOJ. 给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{and},\operatorname{or},\operatorname{xor}\}\),对于 \(i\in[2,n]\),求出 \(\max_{j\in[1,i)}\{a_i\operatorname{op} a_j\}\) 以及 \(|\arg\max_{j\in[1,i)}\{a_i\ope…
Solution -「LOCAL」过河
\(\mathcal{Description}\) 一段坐标轴 \([0,L]\),从 \(0\) 出发,每次可以 \(+a\) 或 \(-b\),但不能越出 \([0,L]\).求可达的整点数. \(L\le10^{12}\),\(1\le a,b\le10^5\). \(\mathcal{Solution}\) \(\mathcal{Case~1}\) 考场上玄学操作,天知道为什么兔子签到的姿势如此诡异. 显然先约 \(\gcd\).我们从 \(0\) 次开始枚举 \(-b\…