算法5-6:Kd树】的更多相关文章

转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:http://weibo.com/1580904460/z1PosdcKj:2.神经网络:http://weibo.com/1580904460/yBmhfrOGl:3.编程艺术第28章:http://weibo.com/1580904460/z4ZGFiDcY.你看到,blog内…
问题 给定一系列的点.和一个矩形.求矩形中包括的点的数量. 解答 这个问题能够通过建立矩阵来进行求解.首先将一个空间切割成矩阵,将点放置在相应的格子中.再计算矩形覆盖的格子.再推断格子中的点是否包括在矩形中 这样的方法的问题是,可能这些点全都集中在一个格子中. 这样的情况下算法的效率比較低. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvY2FpcGVpY2hhbzI=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCM…
1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1时,算法便成了最近邻算法,即寻找最近的那个邻居. 用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居),这K个实例的多数属于某个类,就把该输入实例分类到这个类中. 如上图所示,有两类不同的样本数据,分别用蓝色的…
1. kd树简介 构造kd树的方法如下:构造根结点,使根结点对应于k维空间中包含所有实例点的超矩形区域;通过下面的递归方法,不断地对k维空间进行切分,生成子结点.在超矩形区域(结点)上选择一个坐标轴和在此坐标轴上的一个切分点,确定一个超平面,这个超平面通过选定的切分点并垂直于选定的坐标轴,将当前超矩形区域切分为左右两个子区域(子结点);这时,实例被分到两个子区域.这个过程直到子区域内没有实例时终止(终止时的结点为叶结点).在此过程中,将实例保存在相应的结点上. 2. kd树建立 3. kd树搜索…
最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知样本的类别,以全部训练样本作为代表点,计算未知样本与所有训练样本的距离,并以最近邻者的类别作为决策未知样本类别的唯一依据.但是,最近邻算法明显是存在缺陷的,比如下面的例子:有一个未知形状(图中绿色的圆点),如何判断它是什么形状? 显然,最近邻算法的缺陷--对噪声数据过于敏感,为了解决这个问题,我们可…
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时候,稍许感受到受人信任也是一种压力,愿我不辜负大家对我的信任…
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时…
构建算法 k-d树是一个二叉树,每个节点表示一个空间范围.表1给出的是k-d树每个节点中主要包含的数据结构. 表1 k-d树中每个节点的数据类型 域名 数据类型 描述 Node-data 数据矢量 数据集中某个数据点,是n维矢量(这里也就是k维) Range 空间矢量 该节点所代表的空间范围 split 整数 垂直于分割超平面的方向轴序号 Left k-d树 由位于该节点分割超平面左子空间内所有数据点所构成的k-d树 Right k-d树 由位于该节点分割超平面右子空间内所有数据点所构成的k-d…
k-d树 在计算机科学里,k-d树( k-维树的缩写)是在k维欧几里德空间组织点的数据结构.k-d树可以使用在多种应用场合,如多维键值搜索(例:范围搜寻及最邻近搜索).k-d树是空间二分树(Binary space partitioning )的一种特殊情况.[1] 可以看到,KD树是基于欧式距离度量的. 简介: k-d树是每个节点都为k维点的二叉树.所有非叶子节点可以视作用一个超平面把空间分区成两个半空间( Half-space[失效链接] ).节点左边的子树代表在超平面左边的点,节点右边的子…
转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/47606159 继上一篇中已经介绍了SIFT原理与C源代码剖析,最后得到了一系列特征点,每一个特征点相应一个128维向量.假如如今有两副图片都已经提取到特征点,如今要做的就是匹配上相似的特征点. 相似性查询有两种基本方式:1.范围查询:即给点查询点和查询阈值,从数据集中找出全部与查询点距离小于阈值的点. 2.K近邻查询:给点查询点及正整数K,从数据集中找到与查询点近期的K个数据…