目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part - 4@ @2 - 一些简单的推广@ @3 - 例题与应用@ @4 - prüfer 序列@ @0 - 参考资料@ MoebiusMeow 的讲解(超喜欢这个博主的!) 网上找的另外一篇讲解 @0.5 - 你所需要了解的线性代数知识@ 什么是矩阵? 什么是高斯消元?这个虽然与主题无关,但是求解行列…
简单入门一下矩阵树Matrix-Tree定理.(本篇目不涉及矩阵树相关证明) 一些定义与定理 对于一个无向图 G ,它的生成树个数等于其基尔霍夫Kirchhoff矩阵任何一个N-1阶主子式的行列式的绝对值. 所谓的N-1阶主子式就是对于一个任意的一个 r ,将矩阵的第 r 行和第 r 列同时删去得到的新矩阵. 基尔霍夫Kirchhoff矩阵的一种求法: 基尔霍夫Kirchhoff矩阵 K =度数矩阵 D - 邻接矩阵 A 基尔霍夫Kirchhoff矩阵的具体构造 度数矩阵D:是一个 ${N}\t…
[https://www.cnblogs.com/zj75211/p/8039443.html][矩阵树Matrix-Tree定理与行列式]…
I. 行列式(Determinants)和迹(Trace) 1. 行列式(Determinants) 为避免和绝对值符号混淆,本文一般使用\(det(A)\)来表示矩阵\(A\)的行列式.另外这里的\(A∈R^{n×n}\)默认是方阵,因为只有方阵才能计算行列式. 行列式如何计算的就不在这里赘述了,下面简要给出行列式的各种性质和定理. 定理1:当且仅当一个方阵的行列式不为0,则该方阵可逆. 定理2:方阵\(A\)的行列式可沿着某一行或某一列的元素展开,形式如下: 沿着第\(i\)行展开:\[de…
Matrix tree定理用于连通图生成树计数,由于博主太菜看不懂定理证明,所以本篇博客不提供\(Matrix\ tree\)定理的证明内容(反正这个东西背结论就可以了是吧) 理解\(Matrix\ tree\)定理需要一定的线性代数知识(当然不会也没关系) a.前置芝士--行列式 稍微费点笔墨写写行列式 行列式是一个\(N \times N\)的方阵,比如说下面就是一个\(3 \times 3\)的行列式 \(\left|\begin{array}{cccc} 1 & 6 & 9 \\…
0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilbert Strang教授的线性代数课程,讲的非常好,循循善诱,深入浅出. Relevant Link:  Gilbert Strang教授的MIT公开课:数据分析.信号处理和机器学习中的矩阵方法 https://mp.weixin.qq.com/s/gi0RppHB4UFo4Vh2Neonfw 1.…
[背诵手记]Matrix Tree定理和一些推广 结论 对于一个无向图\(G=(V,E)\),暂时钦定他是简单图,定义以下矩阵: (入)度数矩阵\(D\),其中\(D_{ii}=deg_i\).其他=0 邻接矩阵\(A\),其中\(A_{ij}=[\exist e=(i,j)]\).其他=0 (*******wait!*******) 关联矩阵\(B\),其中\(B_{ij}=[\exist e_i=(a,b)](-1)^{[a>b]}\).其他=0(后面会用到) 拉普拉斯矩阵\(L=D-A\)…
老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明--),FFT老多人写,而MatrixTree没人证我就写一下吧-- Matrix Tree结论 Matrix Tree的结论网上可多,大概一条主要的就是,图中生成树的数量等于 \(V-E\) 的任一余子式,其中: \(V\) 为对角阵,第 \(i\) 个元素为点 \(i\) 的度数 \(E\) 为对称阵,对角线为零且 \(E_{i,…
[Math for ML]矩阵分解(Matrix Decompositions) (上) I. 奇异值分解(Singular Value Decomposition) 1. 定义 Singular Value Decomposition (SVD)是线性代数中十分重要的矩阵分解方法,被称为"线性代数的基本理论",因为它不仅可以运用于所有矩阵(不像特征值分解只能用于方阵),而且奇异值总是存在的. SVD定理 设一个矩阵\(A^{m×n}\)的秩为\(r∈[0,min(m,n)]\),矩阵…
题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元.) //注意题目是将所有房间(这些才是点)连成一棵树,墙非节点,即行列式中只存在表示房间的点.否则就很可能无解了.. #include <cstdio> #include <algorithm> #define mod (1000000000) const int N=103,way[…