题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 //n位*n位最多就只有2n位了 //putchar的速度..还是快的 #include <cmath> #include <cstdio> #include <cctype> #include <algorithm> #define gc() getchar(…
题目大意: 给定l,输入两个位数为l的数A B 输出两者的乘积 FFT讲解 这个讲解蛮好的 就是讲解里面贴的模板是错误的 struct cpx { double x,y; cpx(double _x=0.0,double _y=0.0) { x=_x; y=_y; } cpx operator -(const cpx &b) const { return cpx(x-b.x,y-b.y); } cpx operator +(const cpx &b) const { return cpx(…
题目:给出两个n位10进制整数x和y,你需要计算x*y.($n \leq 60000$) 分析: 两个正整数的相乘可以视为两个多项式的相乘, 例如 $15 \times 16 = 240$, 可写成 $(5+x)*(6+x) = 30 + 11x + x^2$,$x=10$ 这样得到多项式 $A(x)$ 和 $B(x)$,并且能用FFT求出 $C(x)=A(x)B(x)$, 怎么得到最终结果,我们要将 $x=10$ 代入吗? $n$ 这么大,遍历一遍也没有这么大的数据类型能存下,其次,这也不是必…
题目大意:rt 题解:将长度为 N 的大整数看作是一个 N-1 次的多项式,利用 FFT 计算多项式的卷积即可. 代码如下 #include <bits/stdc++.h> using namespace std; typedef complex<double> cp; const int maxn=2e5+10; const double pi=acos(-1); int n,tot=1,bit,rev[maxn],ans[maxn]; cp a[maxn],b[maxn]; c…
洛谷P1919 [模板]A*B Problem升级版(FFT快速傅里叶) 刚学了FFT,我们来刷一道模板题. 题目描述 给定两个长度为 n 的两个十进制数,求它们的乘积. n<=100000 如果用 n^2 暴力,肯定会 TLE. 我们把这两个数看成一个多项式. f(x)=a0+a1*101+a2*102+a3*103+ ...... +an*10n 然后就可以愉快的FFT求解了!! #include<iostream> #include<cmath> #include<…
[模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A(x)=a_1x^k+a_2x^{k-1}+...+a_k\) 或者可以这样表示: \(A(x)=\sum\limits_{i=1}^{k}a_i\times x_i\) 那你很容易看到,用来做这道题用系数表示法来做是 \(O(n^2)\) 的. 点值表示法 假设我们已经知道了这个多项式,那我们把…
luoguP1919 A*B Problem升级版 链接 luogu 思路 ntt模板题 代码 #include <bits/stdc++.h> #define ll long long using namespace std; const int N=3e5+7,mod=998244353; int n,a[N],b[N],limit=1,l,r[N]; ll q_pow(ll a,int b) { ll ans=1; while(b) { if(b&1) ans=ans*a%mod…
/* hdu 1402 A * B Problem Plus FFT 这是我的第二道FFT的题 第一题是完全照着别人的代码敲出来的,也不明白是什么意思 这个代码是在前一题的基础上改的 做完这个题,我才有点儿感觉,原来FFT在这里就是加速大整数乘法而已 像前一题,也是一个大整数乘法,然后去掉一些非法的情况 */ #pragma warning(disable : 4786) #pragma comment(linker, "/STACK:102400000,102400000") #in…
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理都非常到位的总结 推荐ppl巨佬的简明易懂的总结 FFT 多项式乘法的蹊径--点值表示法 一般我们把两个长度为\(n\)的多项式乘起来,就类似于做竖式乘法,一位一位地乘再加到对应位上,是\(O(n^2)\)的 如何优化?直接看是没有思路的,只好另辟蹊径了. 多项式除了我们常用的系数表示法\(y=a_…
[luogu P3384] [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式: 2 x y 表示求树从x到y结点最短路径上所有节点的值之和 操作3: 格式: 3 x z 表示将以x为根节点的子树内所有节点值都加上z 操作4: 格式: 4 x 表示求以x为根节点的子树内所有节点值之和 输入输出格式 输入格式: 第一行包含4个正整数…
传送门 fft模板题. 终于学会fft了. 这个方法真是神奇! 经过试验发现手写的complex快得多啊! 代码: #include<iostream> #include<cstdio> #include<cmath> #define N 10000005 using namespace std; inline int read(){ int ans=0,w=1; char ch=getchar(); while(!isdigit(ch)){if(ch=='-')w=-…
[CF954I]Yet Another String Matching Problem(FFT) 题面 给定两个字符串\(S,T\) 求\(S\)所有长度为\(|T|\)的子串与\(T\)的距离 两个等长的串的距离定义为最少的,将某一个字符全部视作另外一个字符的次数. \(|T|<=|S|<=10^6\),字符集大小为\(6\) 题解 考虑如何快速计算两个串的答案,从左向右扫一遍,如果对应位置上有两个字符不同,检查在并查集中是否属于同一个集合,如果不属于则答案加一,同时合并两个集合.(这个就是…
Luogu P2742 模板-二维凸包 之前写的实在是太蠢了.于是重新写了一个. 用 \(Graham\) 算法求凸包. 注意两个向量 \(a\times b>0\) 的意义是 \(b\) 在 \(a\) 的左侧,于是可以用这个方法判断是否弹点. 写的时候注意细节:确定原点时的比较和排序时的比较是不同的,并且排序时不要把原点加入. #include<bits/stdc++.h> using namespace std; #define ll long long #define mp ma…
题目:https://www.luogu.org/problemnew/show/P3803 第一道FFT! https://www.cnblogs.com/zwfymqz/p/8244902.html http://www.cnblogs.com/RabbitHu/p/FFT.html 就是把系数转化为2*n个点值,点值相乘一下,再转化回2*n个系数的过程. 转化为点值的过程就是倍增一样,第一步是w_{1,0},也就是说x都是1,所以一开始2*n个位置上的点值都是原来的系数:然后变成两个一组取…
P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系数. 接下来一行m+1个数字,从低到高表示G(x))的系数. 输出格式: 一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数. 输入输出样例 输入样例#1: 复制 1 2 1 2 1 2 1 输出样例#1: 复制 1…
luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目 #include<iostream> #include<cstdlib> #include<cstdio> #include<cmath> #include<cstring> #include<iomanip> #include<algorithm> #include<ctime> #include<queue> #inc…
FFT快速傅里叶模板…… /* use way: assign : h(x) = f(x) * g(x) f(x):len1 g(x):len2 1. len = 1; while(len < 2 * len1 || len < 2 * len2) len <<= 1; 2. for i=0 to len1-1 : x1[i](f(i),0) for i=len1 to len-1 : x1[i](0.0) g(x) is same..... 3. fft(x1,len,1) ff…
题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) 的卷积. 思路 FFT 又是一道 \(FFT\) 的模板题,不过用递归的 \(FFT\) 会超时. 代码 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1); typedef complex<dou…
模板 嗯 做多项式乘法,进位 没了 #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> #define pi acos(-1.0) inline int read() { int x = 0,f = 1; char c = getchar(); while(c < '0' || c > '9')c = getchar(); while(c <= '9'…
这其实就是一道裸的FFT 核心思想:把两个数拆成两个多项式用FFT相乘,再反序输出 py解法如下: input() print(int(input())*int(input())) 皮一下hihi fft解法: #include<bits/stdc++.h> using namespace std; ); ],]; ]; complex<],b[]; void FFT(complex<double> *a,int f){ ;i<n;i++)if(i<r[i])sw…
Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出一行,即x*y的结果.(注意判断前导0) Sample Input 134 Sample Output 12 HINT n<=60000 题解 A*B Problem.和 A+B Problem 一样简单. input() and print(int(input()) * int(input()))…
题目来源 吐槽下P3803都是紫题... 真心好写,本想一遍过的...但是 我真是太菜了... #include<bits/stdc++.h> using namespace std; ; const double pi=acos(-1.0); char x[MAXN],y[MAXN]; int sum,lena,lenb,l; int TT[MAXN],c[MAXN]; int r; int n,m; struct Node{ //int x; double x; double y; Nod…
题目描述 给出两个n位10进制整数x和y,你需要计算x*y. 输入输出格式 输入格式: 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. 输出格式: 输出一行,即x*y的结果.(注意判断前导0) 输入输出样例 输入样例#1: 复制 1 3 4 输出样例#1: 复制 12 说明 数据范围: n<=60000 来源:bzoj2179 #include<iostream> #include<cstdio> #include<cstr…
传送门 话说FFT该不会真的只能用来做这种板子吧…… 我们把两个数字的每一位都看作多项式的系数 然后这就是一个多项式乘法 上FFT就好了 然后去掉前导零 (然而连FFT的板子都背不来orz,而且空间又开小了……) //minamoto #include<iostream> #include<cstdio> #include<cmath> using namespace std; <<],z[];,Z; inline ,C+,stdout),C=-;} inl…
题目描述 给出两个n位10进制整数x和y,你需要计算x*y. 输入输出格式 输入格式: 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. 输出格式: 输出一行,即x*y的结果.(注意判断前导0) 输入输出样例 输入样例#1: 复制 1 3 4 输出样例#1: 复制 12 说明 数据范围: n<=60000 来源:bzoj2179 本题数据为洛谷自造数据,使用CYaRon耗时5分钟完成数据制作. emmmm感觉学了FFT没什么乱用啊,, 也就来水一水这种…
题目描述 给出两个 $n$ 位10进制数x和y,求x*y(详见 洛谷P1919) 分析 假设已经学会了FFT/NTT. 高精度乘法只是多项式乘法的特殊情况,相当于$x=10$ 时. 例如n=3,求123*111 $$123 = x^2 + 2x + 3$$ $$111 = x^2 + x +1$$ $$\begin{aligned}123 * 111 &= (x^2 + 2x + 3)(x^2 + x +1)\\  &= x^4 + 3x^3 + 6x^2 + 5x + 3\\  &…
简单的\(A*B\) \(Problem\),卡精度卡到想女装 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #define R(a,b,c) for(register int a = (b); a <= (c); ++ a) #define nR(a,b,c) for(register int a…
FFT模板题,求A*B. 用次FFT模板需要注意的是,N应为2的幂次,不然二进制平摊反转置换会出现死循环. 取出结果值时注意精度,要加上eps才能A. #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; typedef long long ll; const double pi = acos(-1.0); const i…
妈妈我终于会\(A*B\ problem\)啦~~ 题目大意: 给你两个正整数 \(a,b\),求\(a*b\) 其中\(a,b\le 10^{1000000}\) 我们只要把多项式\(A(x)=\sum\limits_{i=0}^{n-1}a_i*x_i\)的\(x\)看作\(10\)就好啦- 注意输入顺序和多项式顺序相反,记得反过来 跑\(fft\),再高精乘求出每一位的系数 #include<bits/stdc++.h> using namespace std; namespace re…
题面戳我 题解 把每个数都直接看做一个多项式,每一位就是一项 现在求用FFT求出卷积 然后考虑一下进位就可以啦 #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #include<complex> #include<set> #include<…