域适应已经是一个很火的方向了,目标检测更不用说,二者结合的工作也开始出现了,这里我总结了CVPR18和CVPR19的相关论文,希望对这个交叉方向的近况有一个了解. 1. 2018_CVPR Domain Adaptive Faster R-CNN for Object Detection in the Wild 这篇可算是第一个工作,以faster rcnn为baseline,在其基础上添加判别器分支,附着到backbone输出的特征图和roi提取到的向量上,前者代表图像级别的域适应,后者代表物…
计算机视觉中的目标检测,因其在真实世界的大量应用需求,比如自动驾驶.视频监控.机器人视觉等,而被研究学者广泛关注. 上周四,arXiv新出一篇目标检测文献<Object Detection in 20 Years: A Survey>,其对该领域20年来出现的技术进行了综述,这是一篇投向PAMI的论文,作者们review了400+篇论文,总结了目标检测发展的里程碑算法和state-of-the-art,并且难能可贵的对算法流程各个技术模块的演进也进行了说明,还深入到目标检测的特定领域,如人…
CVPR2019目标检测论文看点:并域上的广义交 Generalized Intersection over Union Generalized Intersection over Union: A Metric and A Loss for BoundingBox Regression 并域上的广义交Intersection over Union(IOU)是目标检测标准最流行的评估手段.可是,使用boundingbox回归参数方法计算距离误差和最大化度量值优化之间有一个缺陷gap.度量优化目标…