一.Intro Prediction只是评估给定策略的表现,直白的说它是找 “在环境ENV下,AGENT按照给定的策略pai,AGENT的价值函数”. 这篇blog只介绍三种计算方法,没有涉及到 “求取ENV下的最优AGENT”! 对于事先已经给出了ENV,也就是说我们有完整的MDP,知道所有的state,也知道从这到那.从那到这的reward,可以在代码的开头就定义State表和reward表,这就是model-based问题,只要使用贝尔曼方程和贝尔曼最优方程迭代更新找到最优的value f…
摘要:学习玩游戏一直是当今AI研究的热门话题之一.使用博弈论/搜索算法来解决这些问题需要特别地进行周密的特性定义,使得其扩展性不强.使用深度学习算法训练的卷积神经网络模型(CNN)自提出以来在图像处理领域的多个大规模识别任务上取得了令人瞩目的成绩.本文是要开发一个一般的框架来学习特定游戏的特性并解决这个问题,其应用的项目是受欢迎的手机游戏Flappy Bird,控制游戏中的小鸟穿过一堆障碍物.本文目标是开发一个卷积神经网络模型,从游戏画面帧中学习特性,并训练模型在每一个游戏实例中采取正确的操作.…
1.强化学习 @ 目录 1.强化学习 1.1 强化学习原理 1.2 强化学习与监督学习 2.无监督学习 3.半监督学习 4.对抗学习 强化学习(英语:Reinforcement Learning,简称RL)是机器学习中的一个领域,是除了监督学习和非监督学习之外的第三种基本的机器学习方法. 强调如何基于环境而行动,以取得最大化的预期利益[1]. 与监督学习不同的是,强化学习不需要带标签的输入输出对,同时也无需对非最优解的精确地纠正. 1.1 强化学习原理 强化学习是从动物学习.参数扰动自适应控制等…
这是一篇被ICLR 2019 接收的论文.论文讨论了如何利用场景先验知识 (scene priors)来定位一个新场景(novel scene)中未曾见过的物体(unseen objects).举例来说,在「厨房」这一场景中,有一张图片显示「苹果」在冰箱的储物架上,同为水果的物体,如「橙子」,会出现在场景的哪个位置呢?论文提出了用基于强化学习的方法来定位「橙子」. 论文:VISUAL SEMANTIC NAVIGATION USING SCENE PRIORS 论文作者:Wei Yang , X…
原文地址:https://www.hhyz.me/2018/08/05/2018-08-05-RL/ 1. 前言 虽然将深度学习和增强学习结合的想法在几年前就有人尝试,但真正成功的开端就是DeepMind在NIPS 2013上发表的 Playing Atari with Deep Reinforcement Learning 一文,在该文中第一次提出Deep Reinforcement Learning 这个名称,并且提出DQN(Deep Q-Network)算法,实现从纯图像输入完全通过学习来…
 原文地址: https://arxiv.org/pdf/1811.07871.pdf ======================================================== 如何让AI依照人类的意图行事?这是将AI应用于现实世界复杂问题的最大障碍之一. DeepMind将这个问题定义为“智能体对齐问题”,并提出了新的解决方案. 概述了解决agent alignment问题的研究方向.所提出的方法依赖于奖励建模的递归应用,以符合用户意图的方式解决复杂的现实世界问题. 强…
https://blog.csdn.net/Mbx8X9u/article/details/80780459 课程主页:http://rll.berkeley.edu/deeprlcourse/ 所有视频的链接:https://www.youtube.com/playlist?list=PLkFD6_40KJIznC9CDbVTjAF2oyt8_VAe3 由于文章较长,且有较多外链接,建议下载PDF版进行阅读 方式一 点击阅读原文即可下载 方式二 返回菜单栏,回复“20180622” 知识背景…
[入门,来自wiki] 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益.其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为.这个方法具有普适性,因此在其他许多领域都有研究,例如博弈论.控制论.运筹学.信息论.模拟优化方法.多主体系统学习.群体智能.统计学以及遗传算法.在运筹学和控制理论研究的语境下,强化学习被称作“近似动态规划”(approximate dynamic program…
在强化学习(一)模型基础中,我们讲到了强化学习模型的8个基本要素.但是仅凭这些要素还是无法使用强化学习来帮助我们解决问题的, 在讲到模型训练前,模型的简化也很重要,这一篇主要就是讲如何利用马尔科夫决策过程(Markov Decision Process,以下简称MDP)来简化强化学习的建模. MDP这一篇对应Sutton书的第三章和UCL强化学习课程的第二讲. 1. 强化学习引入MDP的原因 强化学习的8个要素我们在第一节已经讲了.其中的第七个是环境的状态转化模型,它可以表示为一个概率模型,即在…
IT博客网 热点推荐 推荐博客 编程语言 数据库 前端 IT博客网 > 域名隐私保护 免费 DRL前沿之:Hierarchical Deep Reinforcement Learning 来源:互联网 发布:域名隐私保护 免费 编辑:IT博客网 时间:2019/08/26 23:49 1 前言 如果大家已经对DQN有所了解,那么大家就会知道,DeepMind测试的40多款游戏中,有那么几款游戏无论怎么训练,结果都是0的游戏,也就是DQN完全无效的游戏,有什么游戏呢?  比如上图这款游戏,叫做Mo…