目录 @description@ @solution@ @accepted code@ @details@ @description@ B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 \(b, d, n\),求: \[\lfloor(\frac{b + \sqrt{d}}{2})^n\rfloor \mod 7528443412579576937 \] 原题戳我查看owo. @solution@ 这道题的思路最早可以追溯到这一道经典题目吧... 注意到数据范围满足…
题解 点一个技能点叫特征方程 就是 \(a_{n + 2} = c_1 a_{n + 1} + c_2 a_{n}\) \(x^2 = c_1 x + c_2\) 解出两根来是\(x_1,x_2\) 通项就是 \(Ax_1^{n} + Bx_2^{n}\)把第一项和第二项带入可以解出来A和B 然后为了得到通项是 \((\frac{b + \sqrt{d}}{2})^n + (\frac{b - \sqrt{d}}{2})^{n}\)的数列 那么我们让 \(c_1 = b\) \(c_2 = \f…
题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 这样做 . 把通配符设成 \(0\) 然后 . 别的按 \(\mathrm{ASCII}\) 码 给值 , 最后把他写成式子的形式 ... 后来发现太年轻了 qwq 先要做这题 , 那么先发现性质咯 : 存在一个长度为 \(len\) 的 \(border\) 当且仅当对于 \(\forall i…
题目描述 一天小甲苯得到了一条神的指示,他要把神的指示写下来,但是又不能泄露天机,所以他要用一种方法把神的指示记下来. 神的指示是一个字符串,记为字符串 \(s_1\),\(s_1\) 仅包含小写字母 \(\texttt{a-z}\). 现在小甲苯想要写下神的指示,记为字符串 \(s_2\),\(s_2\) 仅包含小写字母 \(\texttt{a-z}\),要求 \(s_1\) 中的相邻的两个字母不能在 \(s_2\) 中相邻地出现. 现在给定 \(s_2\) 的长度,小甲苯想知道他有多少种方法…
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k\).第一次修改之前及每次修改之后,都要求你找到一个同样长度为 \(n\) 的单调不降序列 \(B_1, \ldots , B_n\),使得 \(\sum_{i=1}^n (A_i −B_i)^2\) 最小,并输出该最小值.需要注意的是每次操作的影响都是独立的,也即每次操作只会对当前询问造成影响.为…
题目链接 loj#2721. 「NOI2018」屠龙勇士 题解 首先可以列出线性方程组 方程组转化为在模p意义下的同余方程 因为不保证pp 互素,考虑扩展中国剩余定理合并 方程组是带系数的,我们要做的是在%p意义下把系数除过去,(系数为atk[i]) (atk[i],p[i]) 不等于1时无逆元,此时仍可能有解 很显然无解的情况就是 瞎jb猜的,无解的话就是%p[i]意义下atk[i] != 0 ,a[i] = 0 考虑原方程式ai = atk{i] * x + p[i] * y 方程两边同除g…
Loj #2719. 「NOI2018」冒泡排序 题目描述 最近,小 S 对冒泡排序产生了浓厚的兴趣.为了问题简单,小 S 只研究对 *\(1\) 到 \(n\) 的排列*的冒泡排序. 下面是对冒泡排序的算法描述. 输入:一个长度为 n 的排列 p[1...n] 输出:p 排序后的结果. for i = 1 to n do ​ for j = 1 to n - 1 do ​ if(p[j] > p[j + 1]) ​ 交换 p[j] 与 p[j + 1] 的值 冒泡排序的交换次数被定义为交换过程…
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生 活不可或缺的必需品!能充上电吗?现在就试试看吧!」 SHOI 概率充电器由 \(n-1\) 条导线连通了 \(n\) 个充电元件.进行充电时,每条导线是否可以导电以 概率决定,每一个充电元件自身是否直接进行充电也由概率决定.随后电能可以从直接充电的元件经…
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \sum_{i=0}^{T-1} [(i\in A\pmod P)\land(i\in B\pmod Q)] \] 换言之,就是问有多少个小于 \(T\) 的非负整数 \(x\) 满足:\(x\) 除以 \(P\) 的余数属于 \(A\) 且 \(x\) 除以 \(Q\) 的余数属于 \(B\). 输…
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\times a_i\%\) 单位的光会穿过它,有 \(x\times b_i\%\) 的会被反射回去. 现在 \(n\) 层玻璃叠在一起,有 \(1\) 单位的光打到第 \(1\) 层玻璃上,那么有多少单位的光能穿过所有 \(n\) 层玻璃呢? 输入格式 第一行一个正整数 \(n\),表示玻璃层数.…