分类算法之KNN分类】的更多相关文章

1.介绍 KNN是k nearest neighbor 的简称,即k最邻近,就是找k个最近的实例投票决定新实例的类标.KNN是一种基于实例的学习算法,它不同于贝叶斯.决策树等算法,KNN不需要训练,当有新的实例出现时,直接在训练数据集中找k个最近的实例,把这个新的实例分配给这k个训练实例中实例数最多类.KNN也成为懒惰学习,它不需要训练过程,在类标边界比较整齐的情况下分类的准确率很高.KNN算法需要人为决定K的取值,即找几个最近的实例,k值不同,分类结果的结果也会不同. 2.举例 看如下图的训练…
OvO与OvR 前文书道,逻辑回归只能解决二分类问题,不过,可以对其进行改进,使其同样可以用于多分类问题,其改造方式可以对多种算法(几乎全部二分类算法)进行改造,其有两种,简写为OvO与OvR OvR one vs rest,即一对剩余所有,如字面意思,有的时候称为OvA,one vs all 假设有四个类别,对于这种分类问题,可以将一个类别选中以后,使其他三个类别合并为一个类别,即其它类别,这样就换变为二分类问题了,这种可以形成四种情况,选择预测概率高的,也就是说,有n个类别就进行n次分类,然…
knn算法(k-Nearest Neighbor algorithm).是一种经典的分类算法.注意,不是聚类算法.所以这种分类算法 必然包括了训练过程. 然而和一般性的分类算法不同,knn算法是一种懒惰算法.它并非像其他的分类算法先通过训练建立分类模型.,而 是一种被动的分类过程.它是边测试边训练建立分类模型. 算法的一般描述过程如下: 1.首先计算每个测试样本点到其他每个点的距离.这个距离可以是欧氏距离,余弦距离等. 2.然后取出距离小于设定的距离阈值的点.这些点即为根据阈值环绕在测试样本最邻…
一.KNN算法概述 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.Cover和Hart在1968年提出了最初的邻近算法.KNN是一种分类(classification)算法,它输入基于实例的学习(instance-based learning),属于懒惰学习(lazy learning)即KNN没有显式的学习过程,也就是说没有训练阶段,数据…
knn算法(k-Nearest Neighbor algorithm).是一种经典的分类算法. 注意,不是聚类算法.所以这样的分类算法必定包含了训练过程. 然而和一般性的分类算法不同,knn算法是一种懒惰算法.它并不是 像其它的分类算法先通过训练建立分类模型.,而是一种被动的分类 过程.它是边測试边训练建立分类模型. 算法的一般描写叙述步骤例如以下: 1.首先计算每一个測试样本点到其它每一个点的距离. 这个距离能够是欧氏距离,余弦距离等. 2. 然后取出距离小于设定的距离阈值的点. 这些点即为依…
http://blog.csdn.net/lsldd/article/details/41223147 从这一章开始进入正式的算法学习. 首先我们学习经典而有效的分类算法:决策树分类算法. 1.决策树算法 决策树用树形结构对样本的属性进行分类,是最直观的分类算法,而且也可以用于回归.不过对于一些特殊的逻辑分类会有困难.典型的如异或(XOR)逻辑,决策树并不擅长解决此类问题. 决策树的构建不是唯一的,遗憾的是最优决策树的构建属于NP问题.因此如何构建一棵好的决策树是研究的重点. J. Ross Q…
实验简介 本次课程学习了Mahout 的 Bayes 分类算法. 一.实验环境说明 1. 环境登录 无需密码自动登录,系统用户名 shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到桌面上的程序: XfceTerminal: Linux 命令行终端,打开后会进入 Bash 环境,可以使用 Linux 命令: Firefox:浏览器,可以用在需要前端界面的课程里,只需要打开环境里写的 HTML/JS 页面即可: GVim:非常好用的编辑器,最简单的用…
Spark MLlib架构解析 MLlib的底层基础解析 MLlib的算法库分析 分类算法 回归算法 聚类算法 协同过滤 MLlib的实用程序分析 从架构图可以看出MLlib主要包含三个部分: 底层基础:包括Spark的运行库.矩阵库和向量库: 算法库:包含广义线性模型.推荐系统.聚类.决策树和评估的算法: 实用程序:包括测试数据的生成.外部数据的读入等功能. MLlib的底层基础解析 底层基础部分主要包括向量接口和矩阵接口,这两种接口都会使用Scala语言基于Netlib和BLAS/LAPAC…
一.Kmeans算法 kmeans算法又名k均值算法.其算法思想大致为:先从样本集中随机选取 kk 个样本作为簇中心,并计算所有样本与这 kk 个“簇中心”的距离,对于每一个样本,将其划分到与其距离最近的“簇中心”所在的簇中,对于新的簇计算各个簇的新的“簇中心”.  根据以上描述,我们大致可以猜测到实现kmeans算法的主要三点:  (1)簇个数 kk 的选择  (2)各个样本点到“簇中心”的距离  (3)根据新划分的簇,更新“簇中心” 算法过程如下: 参考资料:Kmeans算法理解及代码实现…
不多说,直接上干货! 决策树二元分类的分类数目numClasses控制 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第13章 使用决策树二元分类算法来预测分类StumbleUpon数据集 决策树多元分类的分类数目numClasses控制 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第17章 决策树多元分类UCI Covertype数据集…