Tensorflow 大规模数据集训练方法】的更多相关文章

本文转自:Tensorflow]超大规模数据集解决方案:通过线程来预取 原文地址:https://blog.csdn.net/mao_xiao_feng/article/details/73991787 现在让我们用Tensorflow实现一个具体的Input pipeline,我们使用CoCo2014作为处理对象,网上应该可以下载到CoCo训练集,train2014这个文件.下载链接: http://msvocds.blob.core.windows.net/coco2014/train201…
1.提高程序效率,保证执行速度 (1)尽量使用向量化运算 (2)尽量使用矩阵,必要时才使用数据框 (3)使用read.table时,尽量显式设定colClasses和nrows,设定comment.char="",把不需要的列设置为NULL (4)将外部数据导入矩阵时,使用scan函数 (5)删除临时对象和不再用的对象 (6)用ls.objects()列出工作区对象占用的内存大小 2.把数据存在外部 (1)ff包:将数据保存在硬盘,操作起来跟在内存中一样 (2)bigmemory包:支…
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50614444 测试代码已上传至GitHub:yhlleo/mnist 将MNIST数据集,下载后拷贝到文件夹Mnist_data中,如果已经配置好tensorflow环境,主要的四个测试代码文件,都可以直接编译运行: mnist_softmax.py: MNIST机器学习入门 mnist_deep.py: 深入MNIST fully_c…
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50614444 測试代码已上传至GitHub:yhlleo/mnist 将MNIST数据集,下载后复制到目录Mnist_data中,假设已经配置好tensorflow环境,基本的四个測试代码文件,都能够直接编译执行: mnist_softmax.py: MNIST机器学习入门 mnist_deep.py: 深入MNIST fully_co…
从百度图片下载一些图片当做训练集,好久没写爬虫,生疏了.没有任何反爬,随便抓. 网页: 动态加载,往下划会出现更多的图片,一次大概30个.先找到保存每一张图片的json,其对应的url: 打开调试,清空,然后往下划.然后出现: 点击左侧的链接,出现右边的详细信息,对应的就是URL.对这个url做请求即可.以下是代码: # -*- coding: utf-8 -*- # import tensorflow as tf # import os # import numpy as np import…
官方提供的.flow_from_directory(directory)函数可以读取并训练大规模训练数据,基本可以满足大部分需求.但是在有些场合下,需要自己读取大规模数据以及对应标签,下面提供一种方法. 步骤0:导入相关 import random import numpy as np from keras.preprocessing.image import load_img,img_to_array from keras.preprocessing.image import ImageDat…
无论是ICF基于物品的协同过滤.UCF基于用户的协同过滤.基于内容的推荐,最基本的环节都是计算相似度.如果样本特征维度很高或者<user, item, score>的维度很大,都会导致无法直接计算.设想一下100w*100w的二维矩阵,计算相似度怎么算? 更多内容参考--我的大数据学习之路--xingoo 在spark中RowMatrix提供了一种并行计算相似度的思路,下面就来看看其中的奥妙吧! 相似度 相似度有很多种,每一种适合的场景都不太一样.比如: 欧氏距离,在几何中最简单的计算方法 夹…
1:一条数据是如何落地到对应的shard上的 当索引一个文档的时候,文档会被存储到一个主分片中. Elasticsearch 如何知道一个文档应该存放到哪个分片中呢? 首先这肯定不会是随机的,否则将来要获取文档的时候我们就不知道从何处寻找了.实际上,这个过程是根据下面这个算法决定的: shard = hash(routing) % number_of_primary_shards routing 是一个可变值,默认是文档的 _id ,也可以设置成一个自定义的值. routing 通过 hash…
1. 背景 多维分析是大数据分析的一个典型场景,这种分析一般带有过滤条件.对于此类查询,尤其是在高基字段的过滤查询,理论上只我们对原始数据做合理的布局,结合相关过滤条件,查询引擎可以过滤掉大量不相关数据,只需读取很少部分需要的数据.例如我们在入库之前对相关字段做排序,这样生成的每个文件相关字段的min-max值是不存在交叉的,查询引擎下推过滤条件给数据源结合每个文件的min-max统计信息,即可过滤掉大量不相干数据. 上述技术即我们通常所说的data clustering 和 data skip…
前文:三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署 TensorFlow 模型导出 使用 SavedModel 完整导出模型 不仅包含参数的权值,还包含计算的流程(即计算图) tf.saved_model.save(model, "保存的目标文件夹名称") 将模型导出为 SavedModel model = tf.saved_model.load("保存的目标文件夹名称") 载入 SavedModel 文件 因为 SavedModel…