会议 We refer specifically to ACM Recommender Systems (RecSys), established in 2007 and now the premier annual event in recommender technology research and applications. In addition, sessions dedicated to RSs are frequently included in the more tradi…
一个针对出租车司机有效花费的推荐系统 摘要 GPS技术和新形式的城市地理学改变了手机服务的形式.比如说,丰富的出租车GPS轨迹使得出做租车领域有新方法.事实上,最近很多工作是在使用出租车GPS轨迹数据来开发手机推荐系统.这些系统可以推荐一系列的载客点,为了使得在最短的驾驶距离里最大可能地找到一个乘客.然而,在现实世界中,出租车的收入和有效的驾驶时间息息相关.换句话说,对一个出租车司机来说,在找到一个乘客前知道一个确切地驾驶路径来缩短驾驶时间更加重要.最后,在本文中,我们提出了开发一个收益比高的推…
转自“浙江大学计算机学院软硬件协同设计实验室”:http://multicore.zju.edu.cn/fatlab/Indicate-paper.htm 1           体系结构领域,排名为 1.1          顶级会议>顶级期刊>SCI期刊>EI期刊>国内著名学报>国内一级学报>EI.ISTP会议>国内核心期刊 2           论文检索方法 2.1          从www.acm.org.www.ieee.org.scholar.go…
(聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平凡的信息恰恰是深度学习所具备的特点.论文对基于深度的学习的推荐系统方法进行了对比以及分类.文章的主要贡献有以下三点: > 对基于深度学习技术的推荐模型进行系统评价,并提出一种分类和组织当前工作的分类方案. > 提供现有技术的概述和总结 > 我们讨论挑战和开放性问题,并确定本研究中的新趋势和未…
AI顶级会议以及期刊 Upcoming Top Conferences NIPS 2009 UAI 2009 ICML 2009 COLT 2009 AISTATS 2009 CVPR 2009 ICCV 2009 ECCV 2010 IJCAI 2011 AAAI 2010 SIGIR 2010 KDD 2009 ACL 2010 Top Journals in Artificial Intelligence Journal of Machine Learning Research Machi…
  Algorithm:     When to select Anonaly detection or Supervised learning? 总的来说guideline是如果positive example (anomaly examples)特别少就用Anamaly detection. 如果数据positive example 越来越多,可以选择从Anomanly detection 切换到 Supervised learning.     怎么选择feature ?   可以先画出f…
推荐系统(Recommender System) 案例 为用户推荐电影 数据展示 Bob Tom Alice Jack 动作成分 浪漫成分 Movie1 5 ? 0 3 ? ? Movie2 ? 0 3 ? ? ? Movie3 0 1 0 5 ? ? Movie4 ? 4 1 0 ? ? 算法 协同过滤算法(Collaborative filter learning algorithm) 记号 \(n_m\): 数据中电影的数量, 其中n表示number, m表示movie \(n_u\):…
[论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys · July 2017) [论文作者] SHUAI ZHANG, University of New South WalesLINA YAO, University of New South WalesAIXIN SUN, Nanyang Technological UniversityYI TAY…
Collaborative Recommender System基于User给Item的打分表,认为相似度很高的用户,会对同一个item给出相似的分数,找出K个相似度最高的用户,集合他们的打分,来推算目标用户对于某一item的打分. 1.每个用户打分的习惯范围不同,比如Bob习惯给出的最高分是5分,而Alice则只愿意在1-3分区间打分,所以我们不可能因为Bob和Alice相似度高,就预测Alice会给某个喜欢的item打5分.所以,在预测时,我们需要参考每个人的打分均值 2.将每个人的打分进行…
与User-Based Collaborative Recommender System认为‘类似的用户会对同一个item给出类似的打分’不同,Item-Based Collaborative Recommender System的思想是‘同一个用户,会给类似的item,打出类似的分数’.听起来和Content-Based Recommender System有点类似,但是IBCRS的相似度,是基于用户打分的,而不是基于内容分析. 1.和UBCRS一样,我们需要针对Rating Matrix进行…