1. 社团划分 0x1:社区是什么 在社交网络中,用户相当于每一个点,用户之间通过互相的关注关系构成了整个网络的结构. 在这样的网络中,有的用户之间的连接较为紧密,有的用户之间的连接关系较为稀疏.其中连接较为紧密的部分可以被看成一个社区,其内部的节点之间有较为紧密的连接,而在两个社区间则相对连接较为稀疏. 整个整体的结构被称为社团结构.如下图,红色的黑色的点集呈现出社区的结构, 用红色的点和黑色的点对其进行标注,整个网络被划分成了两个部分,其中,这两个部分的内部连接较为紧密,而这两个社区之间的连…
barnes-hut算法 http://arborjs.org/docs/barnes-hut Fast Multipole Methods算法 http://www.umiacs.umd.edu/~ramani/cmsc878R/…
作者: peghoty 出处: http://blog.csdn.net/peghoty/article/details/9286905 社区发现(Community Detection)算法用来发现网络中的社区结构,也可以看做是一种聚类算法. 博客上看到一篇优秀的介绍社区发现的PPT,转载过来分享:   从上述定义可以看出:社区是一个比较含糊的概念,只给出了一个定性的刻画. 另外需要注意的是,社区是一个子图,包含顶点和边.   下面我们以新浪微博用户对应的网络图为例,来介绍相应的社区发现算法.…
作者: peghoty 出处: http://blog.csdn.net/peghoty/article/details/9286905 社区发现(Community Detection)算法用来发现网络中的社区结构,也可以看做是一种聚类算法. 以下是我的一个 PPT 报告,分享给大家. 从上述定义可以看出:社区是一个比较含糊的概念,只给出了一个定性的刻画. 另外需要注意的是,社区是一个子图,包含顶点和边. 下面我们以新浪微博用户对应的网络图为例,来介绍相应的社区发现算法. 这里在相互关注的用户…
作者: peghoty 出处: http://blog.csdn.net/peghoty/article/details/9286905 社区发现(Community Detection)算法用来发现网络中的社区结构,也可以看做是一种聚类算法. 以下是我的一个 PPT 报告,分享给大家. 从上述定义可以看出:社区是一个比较含糊的概念,只给出了一个定性的刻画. 另外需要注意的是,社区是一个子图,包含顶点和边. 下面我们以新浪微博用户对应的网络图为例,来介绍相应的社区发现算法. 这里在相互关注的用户…
Louvain算法是基于模块度的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标是最大化整个社区网络的模块度. 模块度(Modularity) 模块度是评估一个社区网络划分好坏的度量方法,它的物理含义是社区内节点的连边数与随机情况下的边数只差,它的取值范围是 [−1/2,1),其定义如下: $$Q = \frac{1}{2m}\sum_{i,j}[A_{ij} - \frac{k_ik_j}{2m}]\delta(c_i,c_j)$$ $$\delta(u,…
在做东西的时候用到了社区发现,因此了解了一下有关社区发现的一些问题 1,社区发现算法 (1)SCAN:一种基于密度的社团发现算法 Paper: <SCAN: A Structural Clustering Algorithm for Networks>  Auther: Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, Thomas A. J. Schweiger  Conference: SIGKDD 2007 主要概念: 节点相似度定义为两个节点共同邻居的数目与…
一.概念 复杂网络:现实生活中各种系统都可以看做成复杂网络,复杂网络构成包括节点和边,节点是网络中的基本组成单元,节点之间的联系或者关系是网络中的边.例如 电力网络:基站代表节点,基站之间是否互通表示边: 社交网络:用户代表节点,用户的关注关系表示边: 万维网络:网页代表节点,网页的链接关系代表边: 交通运输网络,神经网络,经济贸易网络,科学家合作网络等等 社区发现:社区发现在数据挖掘领域有重要的作用,在一个网络中,如果一个团体有共同的爱好或者特征,并紧密联系在一起,那么我们称网络中这个小集体为…
其中部分转载的社区发现SLPA算法文章 一.概念 社区(community)定义:同一社区内的节点与节点之间关系紧密,而社区与社区之间的关系稀疏. 设图G=G(V,E),所谓社区发现是指在图G中确定nc(>=1)个社区C={C1,C2,...,Cnv},使得各社区的顶点集合构成V的一个覆盖. 若任意两个社区的顶点集合的交际均为空,则称C为非重叠社区(disjoint communities);否则称为重叠社区(overlapping communities). 二.SLPA算法思想与流程 SLP…
社区(community)定义:同一社区内的节点与节点之间关系紧密,而社区与社区之间的关系稀疏. 设图G=G(V,E),所谓社区发现是指在图G中确定nc(>=1)个社区C={C1,C2,...,Cnv},使得各社区的顶点集合构成V的一个覆盖. 若任意两个社区的顶点集合的交际均为空,则称C为非重叠社区(disjoint communities);否则称为重叠社区(overlapping communities). SLPA(Speaker-listener Label Propagation Al…