http://blog.csdn.net/pipisorry/article/details/52789149 最大熵模型相关的基础知识 [概率论:基本概念CDF.PDF] [信息论:熵与互信息] [最优化方法:拉格朗日乘数法] [参数估计:贝叶斯思想和贝叶斯参数估计] [参数估计:最大似然估计MLE] 皮皮blog 最大熵模型The Maximum Entropy 最大熵原理是在1957 年由E.T.Jaynes 提出的,其主要思想是,在只掌握关于未知分布的部分知识时,应该选取符合这些知识但熵…
https://wanghuaishi.wordpress.com/2017/02/21/%E5%9B%BE%E8%A7%A3%E6%9C%80%E5%A4%A7%E7%86%B5%E5%8E%9F%E7%90%86%EF%BC%88the-maximum-entropy-principle%EF%BC%89/ 这个“熵“并不是指热力学上熵的概念,而是由信息论男神克劳德·艾尔伍德·香农(Claude Elwood Shannon )在1948年提出的“信息熵“,用来描述信息的不确定程度. 信息熵…
熵的概念在统计学习与机器学习中真是很重要,熵的介绍在这里:信息熵 Information Theory .今天的主题是最大熵模型(Maximum Entropy Model,以下简称MaxEnt),MaxEnt 是概率模型学习中一个准则,其思想为:在学习概率模型时,所有可能的模型中熵最大的模型是最好的模型:若概率模型需要满足一些约束,则最大熵原理就是在满足已知约束的条件集合中选择熵最大模型.最大熵原理指出,对一个随机事件的概率分布进行预测时,预测应当满足全部已知的约束,而对未知的情况不要做任何主…
引入1:随机变量函数的分布 给定X的概率密度函数为fX(x), 若Y = aX, a是某正实数,求Y得概率密度函数fY(y). 解:令X的累积概率为FX(x), Y的累积概率为FY(y). 则 FY(y) = P(Y <= y) = P(aX <= y) = P(X <= y/a) = FX(y/a), 则 fY(y) = d(FX(y/a)) / dy = 1/a * fX(x/a) 引入2:如何定义信息量 某事件发生的概率小,则该事件的信息量大: 如果两个事件X和Y独立,即p(xy)…
0,熵的描述 熵(entropy)指的是体系的混沌的程度(可也理解为一个随机变量的不确定性),它在控制论.概率论.数论.天体物理.生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量.熵由鲁道夫·克劳修斯(Rudolf Clausius)提出,并应用在热力学中.后来在,克劳德·艾尔伍德·香农(Claude Elwood Shannon)第一次将熵的概念引入到信息论中来.----baidu 下面我们将从随机变量开始一步一步慢慢理解熵. 1,随机变量(rand…
原文:https://www.cnblogs.com/Twobox/p/16791412.html 熵 熵:表述一个概率分布的不确定性.例如一个不倒翁和一个魔方抛到地上,看他们平稳后状态.很明显,魔方可能有6种状态,而不倒翁很大可能就一个状态,那么我们说在这种情况下,不倒翁的确定性高于魔方.也就是魔方的熵大于另外一个.那么我看表达式: \(H(p)=-\sum_i^n P_i logP_i\) 很明显,当p的概率是0或1时,没有不确定性,熵值为0.当为0.5时,熵最大,最不确定. 相对熵 htt…
确界原理  supremum and infimum principle  戴德金定理  Dedekind theorem http://www.math.ubc.ca/~cass/courses/m446-05b/dedekind-book.pdf#page=15 continulity and irrational numbersthe nature and meaning of numbers…
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor 2019-07-15 22:23:02 Paper: https://arxiv.org/pdf/1801.01290.pdf or Updated Version: https://arxiv.org/pdf/1812.05905.pdf Project: https://sites.google.c…
因为本篇文章公式较多,csdn博客不同意复制公式,假设将公式一一保存为图片在上传太繁琐了,就用word排好版后整页转为图片传上来了.如有错误之处.欢迎指正.…