洛谷 思路 显然,为了达到这个最小公倍数,只能走\(a,b\)不是很大的边. 即,当前询问的是\(A,B\),那么我们只能走\(a\leq A,b\leq B\)的边. 然而,为了达到这最小公倍数,又需要有\(\max\{a\}=A,\max\{b\}=B\). 那么暴力做法就很显然了:并查集维护连通块的\(\max\{a\},\max\{b\}\),询问时把满足条件的边全都连上,看最终是否满足条件. 如何优化呢? 把边按\(a\)排序,撒\(\sqrt m\)个关键点,每个关键点把它前面的边按…
题意 题目链接 给出一张带权无向图,每次询问\((u, v)\)之间是否存在一条路径满足\(max(a) = A, max(b) = B\) Sol 这题居然是分块..想不到想不到..做这题的心路历程大概可以写个800字的作文. \(warning:\)下面的做法复杂度是错的.但是可以过 以下是attack的心路历程 考场上不会做,然后看了一眼题解发现可以对\(a\)分块. 怎么分呢?我们可以对边按\(a\)分块,然后把每个询问先按\(b\)排序后扔到对应的\(a\)所在的块内 这个时候\(b\…
题意可以转化为是否能找一条从\(u\)到\(v\)的路径,经过的边的\(a\)和\(b\)的最大值恰好都是询问所给定的值. 若只有\(a\)的限制,可以将询问离线,对边和询问都从小到大排序,然后双指针维护当前合法的边,用并查集维护连通块的最值和连通性. 现在有\(a\)和\(b\)的限制,考虑对边分块,先对所有边按\(a\)从小到大排序,对所有询问按\(b\)从小到大排序. 考虑当前枚举到的一个块及其之前块对询问的贡献.对所有询问找到\(a\)大小恰好在当前块范围内的询问,对当前块之前的整块按\…
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师)的掌握程度 考完试有人说这题是马拉车,吓死我了 首先,你把数据读入之后,先用一个大法师把以每个节点为根的子树的大小和权值都预处理出来,方便待会剪枝 然后,你对以每个节点为根的子树,都判断一下以下条件(这时刚才处理的东西就有用了) ① 左子树和右子树的节点数是否相等 ② 左子树和右子树的权值是否相等…
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种是通过分成 多块后在每块上打标记以实现快速区间修改,区间查询的一种算法.根号 分治与其思路相似,将原本若一次性解决时间复杂度很高的问题分块去解 决来降低整体的时间复杂度. 例题 以本题举例子哈希冲突 本题作为论文的第一道题目,是一道很好的练习题,注意,本体给出的 \(value[i]\) 是 \(i…
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 LCP 长度数组 \(p\). 数据范围:\(1\le |a|,|b|\le 2\times 10^7\). 蒟蒻语 别的题解为什么代码那么长.讲解那么复杂?蒟蒻不解,写篇易懂一点的,希望没有错误理解. 注意:蒟蒻的下标是从 \(0\) 开始的. 蒟蒻解 定义 \(z(i) (i>0)\):后缀 \(…
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \(\max_{k=l_i}^{r_i}h_k=g_i\).求满足条件的 \(h_i\) 的方案数膜 \(998244353\). 数据范围:\(1\le T\le 20\),\(1\le l_i\le r_i\le n\le 9\cdot 10^8\),\(1\le g_i\le A\le 9\cdo…
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积的讲解. 三位向量的运算 模长: 即向量长度,\(|\vec{a}|=\sqrt{x_a^2+y_a^2+z_a^2}\). 点积: 标量 \(\vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|\cos<\vec{a},\vec{b}>=x_ax_b+y_ay_b+z_a…
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) 互不相等.将糖果和药片一一对应,求 糖果能量大于药片 比 药片能量大于糖果 多 \(k\) 组的方案数. 数据范围:\(1\le n\le 2000\),\(0\le k\le n\). 萌新初学二项式反演,这是第一道完全自己做出来的题,所以写篇题解庆祝并提升理解. 有 \(\frac{n+k}{2…
洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\texttt{D x}\),删除第 \(x\) 个字母. \(\texttt{R x y}\),反转当前文本中的区间 \([x,y]\). \(\texttt{P x}\),输出初始文本中第 \(x\) 个字母在当前文本中的位置.特别地,若不存在,输出 \(0\). \(\texttt{T x}\),输…