使用python和numpy实现函数的拟合】的更多相关文章

给出一个数组x,然后基于一个二次函数,加上一些噪音数据得到另一组数据y. 将得到的数组x,y,构建一个机器学习模型,采用梯度下降法,通过多次迭代,学习到函数的系数.使用python和numpy进行编程,具体实现的代码如下: import numpy as np %matplotlib inline from matplotlib import pyplot as plt np.random.seed(100) x=np.linspace(-1,1,100).reshape(100,1) y=3n…
摘要:总结股票均线计算原理--线性关系,也是以后大数据处理的基础之一,NumPy的 linalg 包是专门用于线性代数计算的.作一个假设,就是一个价格可以根据N个之前的价格利用线性模型计算得出. 前一篇,在计算均线,指数均线时,分别计算了不同的权重,比如 和 都是按不同的计算方法来计算出相关的权重,一个股价可以用之前股价的线性组合表示出来,也即,这个股价等于之前的股价与各自的系数相乘后再做加和的结果,但是,这些系数是需要我们来确定的,也即一个线性相关的权重.一.用线性模型预测价格创建步骤如下:1…
摘要:NumPy中包含大量的函数,这些函数的设计初衷是能更方便地使用,掌握解这些函数,可以提升自己的工作效率.这些函数包括数组元素的选取和多项式运算等.下面通过实例进行详细了解. 前述通过对某公司股票的收盘价的分析,了解了某些Numpy的一些函数.通常实际中,某公司的股价被另外一家公司的股价紧紧跟随,它们可能是同领域的竞争对手,也可能是同一公司下的不同的子公司.可能因两家公司经营的业务类型相同,面临同样的挑战,需要相同的原料和资源,并且争夺同类型的客户. 实际中,有很多这样的例子,如果要检验一下…
numpy.apply_along_axis(func, axis, arr, *args, **kwargs): 必选参数:func,axis,arr.其中func是我们自定义的一个函数,函数func(arr)中的arr是一个数组,函数的主要功能就是对数组里的每一个元素进行变换,得到目标的结果. 其中axis表示函数func对数组arr作用的轴. 可选参数:*args, **kwargs.都是func()函数额外的参数. 返回值:numpy.apply_along_axis()函数返回的是一个…
成交量(volume)是投资中一个非常重要的变量,它是指在某一时段内具体的交易数,可以在分时图中绘制,包括日线图.周线图.月线图甚至是5分钟.30分钟.60分钟图中绘制. 股票市场成交量的变化反映了资金进出市场的情况,成交量是判断市场走势的重要指标.一般情况下,成交量大且价格上涨的股票,趋势向好.成交量持续低迷时,一般出现在熊市或股票整理阶段,市场交易不活跃.成交量是判断股票走势的重要依据,对分析主力行为提供了重要的依据.投资者对成交量异常波动的股票应当密切关注. OBV(On-Balance…
在NumPy中,矩阵是 ndarray 的子类,与数学概念中的矩阵一样,NumPy中的矩阵也是二维的,可以使用 mat . matrix 以及 bmat 函数来创建矩阵. 一.创建矩阵 mat 函数创建矩阵时,若输入已为 matrix 或 ndarray 对象,则不会为它们创建副本. 因此,调用 mat() 函数和调用 matrix(data, copy=False) 等价. 1) 在创建矩阵的专用字符串中,矩阵的行与行之间用分号隔开,行内的元素之间用空格隔开.使用如下的字符串调用 mat 函数…
在对numpy的数组进行操作时,我们应该尽量避免循环操作,尽可能利用矢量化函数来避免循环. 但是,直接将自定义函数应用在numpy数组之上会报错,我们需要将函数进行矢量化转换. def Theta(x): """ Scalar implemenation of the Heaviside step function. """ if x >= 0: return 1 else: return 0 Theta(array([-3,-2,-1,0…
这个函数在的数字信号处理中用处还是比较广泛的,函数的具体定义如下所示: numpy.dot(a, b, out=None) 该函数的作用是获取两个元素a,b的乘积,表示的含义如下所示: dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m]) 使用方法如下所示: 单个数: >>> np.dot(3, 4) 12 复数: >>> np.dot([2j, 3j], [2j, 3j]) (-13+0j) 二维矩阵: >>>…
讲解清晰,转载自:https://blog.csdn.net/rifengxxc/article/details/75008427 众所周知,sum不传参的时候,是所有元素的总和.这里就不说了. 1 sum函数可以传入一个axis的参数,这个参数怎么理解呢?这样理解: 假设我生成一个numpy数组a,如下 >>> import numpy as np >>> a = np.array([[[1,2,3,2],[1,2,3,1],[2,3,4,1]],[[1,0,2,0]…
numpy库数组拼接np.concatenate 原文:https://blog.csdn.net/zyl1042635242/article/details/43162031 思路:numpy提供了numpy.concatenate((a1,a2,...), axis=0)函数.能够一次完成多个数组的拼接.其中a1,a2,...是数组类型的参数 示例3: >>> a=np.array([1,2,3])>>> b=np.array([11,22,33])>>…
摘要:本篇我们将以分析历史股价为例,介绍怎样从文件中载入数据,以及怎样使用NumPy的基本数学和统计分析函数.学习读写文件的方法,并尝试函数式编程和NumPy线性代数运算,来学习NumPy的常用函数. 一.文件读入 :读写文件是数据分析的一项基本技能 CSV(Comma-Separated Value,逗号分隔值)格式是一种常见的文件格式.通常,数据库的转存文件就是CSV格式的,文件中的各个字段对应于数据库表中的列. NumPy中的 loadtxt 函数可以方便地读取CSV文件,自动切分字段,并…
摘要:先汇总相关股票价格,然后有选择地对其分类,再计算移动均线.布林线等. 一.汇总数据 汇总整个交易周中从周一到周五的所有数据(包括日期.开盘价.最高价.最低价.收盘价,成交量等),由于我们的数据是从2020年8月24日开始导出,数据多达420条,先截取部分时间段的数据,不妨先读取开始20个交易日的价格.代码如下: import numpy as np from datetime import datetime def datestr2num(s): #定义一个函数 return dateti…
在NumPy中,所有的标准三角函数如sin.cos.tan等均有对应的通用函数. 一.利萨茹曲线 (Lissajous curve)利萨茹曲线是一种很有趣的使用三角函数的方式(示波器上显示出利萨茹曲线).利萨茹曲线由以下参数方程定义: x = A sin(at + n/2) y = B sin(bt)利萨茹曲线的参数包括 A . B . a 和 b .为简单起见,我们令 A 和 B 均为1,设置的参数为 a=9 , b=8 import numpy as np import matplotlib…
numpy.linalg 模块包含线性代数的函数.使用这个模块,可以计算逆矩阵.求特征值.解线性方程组以及求解行列式等.一.计算逆矩阵 线性代数中,矩阵A与其逆矩阵A ^(-1)相乘后会得到一个单位矩阵I.该定义可以写为A *A ^(-1) =1.numpy.linalg 模块中的 inv 函数可以计算逆矩阵. 1) 用 mat 函数创建示例矩阵 import numpy as np import matplotlib.pyplot as plt A = np.mat("0 1 2;1 0 3;…
定义: Stack arrays in sequence horizontally (column wise). Take a sequence of arrays and stack them horizontally to make a single array. Rebuild arrays divided by hsplit. This function continues to be supported for backward compatibility, but you shoul…
Numpy.nonzero()返回的是数组中,非零元素的位置.如果是二维数组就是描述非零元素在几行几列,三维数组则是描述非零元素在第几组中的第几行第几列. 举例如下: 二维数组: a = np.array([[, , ], [, , ], [, , ]]) b = np.nonzero(a) print(b) 结果为:(array([0, 0, 1, 2], dtype=int64), array([0, 2, 1, 2], dtype=int64)) 第一个array描述行,第二个array描…
二.常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准数学函数(无需编写循环). 用于读写磁盘数据的工具以及用于操作内存映射文件的工具. 线性代数.随机数生成以及傅里叶变换功能. 用于集成C.C++.Fortran等语言编写的代码的工具. 首先要导入numpy库:import numpy as np A NumPy函数和属性: 类型 类型代码 说明 i…
在学习机器学习实教程时,实现KNN算法的代码中用到了numpy的tile函数,因此对该函数进行了一番学习: tile函数位于python模块 numpy.lib.shape_base中,他的功能是重复某个数组.比如tile(A,n),功能是将数组A重复n次,构成一个新的数组 print(tile([0,0],1)) [0 0] print(tile([0,0],2)) [0 0 0 0] print(tile([0, 0], 4)) [0 0 0 0 0 0 0 0] print(tile([0…
二.常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准数学函数(无需编写循环). 用于读写磁盘数据的工具以及用于操作内存映射文件的工具. 线性代数.随机数生成以及傅里叶变换功能. 用于集成C.C++.Fortran等语言编写的代码的工具. 首先要导入numpy库:import numpy as np A NumPy函数和属性: 类型 类型代码 说明 i…
前言:最近学习Python,才发现原来python里的各种库才是大头! 于是乎找了学习资料对Numpy库常用的函数进行总结,并带了注释.在这里分享给大家,对于库的学习,还是用到时候再查,没必要死记硬背. PS:本博文摘抄自中国慕课大学上的课程<Python数据分析与展示>,推荐刚入门的同学去学习,这是非常好的入门视频. Numpy是科学计算库,是一个强大的N维数组对象ndarray,是广播功能函数.其整合C/C++.fortran代码的工具 ,更是Scipy.Pandas等的基础 .ndim…
为收藏学习,特转载:https://blog.csdn.net/u011995719/article/details/71080987 前言:最近学习Python,才发现原来python里的各种库才是大头! 于是乎找了学习资料对Numpy库常用的函数进行总结,并带了注释.在这里分享给大家,对于库的学习,还是用到时候再查,没必要死记硬背.PS:本博文摘抄自中国慕课大学上的课程<Python数据分析与展示>,推荐刚入门的同学去学习,这是非常好的入门视频. Numpy是科学计算库,是一个强大的N维数…
一. python sum函数 描述: sum() 对序列进行求和 用法: sum(iterable[, start]) iterable:可迭代对象,例如,列表,元组,集合. start:指定相加的参数,如果没有,默认为0. 示例: ```pythonx = [0, 1, 2]print("No.1 ", sum(x))```输出结果 No.1 3 二.numpy中的 sum() 描述: 对numpy进行的特定操作. 用法: sum(a, axis=None, dtype=None,…
from NumPy import * 函数形式: tile(A,rep) 功能:重复A的各个维度 参数类型: - A: Array类的都可以 - rep:A沿着各个维度重复的次数 这个英文单词的本意是:贴瓷砖,还挺形象的. 举例: tile([17,29],2),如果rep参数是一个整数,则表示重复A中的元素rep次,即行数(即维度)只有1维,所以2的意思是在“列”这个维度上重复2次 输出[17,29,17,29] tile([29,17],(3,5)) 此时的(3,5)和[3,5]是相同的效…
[Numpy] 先感叹下最近挖坑越来越多了.. 最近想不自量力地挑战下ML甚至DL.然而我也知道对于我这种半路出家,大学数学也只学了两个学期,只学了点最基本的高数还都忘光了的渣滓来说,难度估计有点大..总之尽力而为吧.在正式接触ML的算法之前,Numpy是一个必须知道的Python库.其中有很多关于线代的类和方法可以直接用. 当然Numpy不是内建的库,但是pip install numpy一下也很简单. ■ 方法罗列 我也不知道怎么开始写好,按书上的教程,罗列下提到的方法吧..书上代码一个大前…
这篇文章主要讲述Python如何安装Numpy.Scipy.Matlotlib.Scikit-learn等库的过程及遇到的问题解决方法.最近安装这个真是一把泪啊,各种不兼容问题和报错,希望文章对你有所帮助吧!你可能遇到的问题包括:        ImportError: No module named sklearn 未安装sklearn包        ImportError: DLL load failed: 找不到指定的模块        ImportError: DLL load fai…
python-numpy python中的数据 一维数据 用列表和集合表示 数组与列表的关系 列表:数据类型可以不同 数组:数据类型可以相同 多维数据 用列表表示 高维数据 用字典表示 高维数据仅利用最基本的二元关系展示数据之间的复杂结构. N维数组对象 ndarray Python已有列表类型,为什么需要一个数组对象(类型)? 看一下下面两个例子就知道了. def pySum(): a = [1,2,3,4] b = [4,5,6,7] c = [] for i in range(len(a)…
NumPy 字符串函数 以下函数用于对 dtype 为 numpy.string_ 或 numpy.unicode_ 的数组执行向量化字符串操作. 它们基于 Python 内置库中的标准字符串函数. 这些函数在字符数组类(numpy.char)中定义. 函数 描述 add() 对两个数组的逐个字符串元素进行连接 multiply() 返回按元素多重连接后的字符串 center() 居中字符串 capitalize() 将字符串第一个字母转换为大写 title() 将字符串的每个单词的第一个字母转…
https://blog.csdn.net/cxmscb/article/details/54583415 一.numpy概述 numpy(Numerical Python)提供了python对多维数组对象的支持:ndarray,具有矢量运算能力,快速.节省空间.numpy支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库. 二.创建ndarray数组 ndarray:N维数组对象(矩阵),所有元素必须是相同类型. ndarray属性:ndim属性,表示维度个数:shape…
来源于:https://github.com/HanXiaoyang/python-and-numpy-tutorial/blob/master/python-numpy-tutorial.ipynb python与numpy基础   寒小阳(2016年6月)   Python介绍   如果你问我没有编程基础,想学习一门语言,我一定会首推给你Python类似伪代码的书写方式,让你能够集中精力去解决问题,而不是花费大量的时间在开发和debug上同时得益于Numpy/Scipy这样的科学计算库,使得…
Numpy介绍: NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础. NumPy的主要功能: 1)ndarray,一个多维数组结构,高效且节省空间 2)无需循环对整组数据进行快速运算的数学函数 3)读写磁盘数据的工具以及用于操作内存映射文件的工具 4)线性代数.随机数生成和傅里叶变换功能 5)用于集成C.C++等代码的工具 pyhton里面安装.引入方式: 安装方法:pip install numpy 引用方式:import numpy as np  创建数组:…