P3295 萌萌哒 题解】的更多相关文章

题目 一个长度为n的大数,用\(S_1,S_2,S_3...S_n\)表示,其中\(S_i\)表示数的第\(i\)位,\(S_1\)是数的最高位,告诉你一些限制条件,每个条 件表示为四个数,\(l_1,r_1,l_2,r_2\),即两个长度相同的区间,表示子串\(S_{l_1},S_{l_1+1},S+{l_1+2}...S_{r_1}\)与\(S_{l_2},S_{l_2+1},S_{l_2+2}...S_{r2}\)完全相同.比如\(n=6\)时,某限制条件\(l_1=1,r_1=3,l_2…
洛谷P3295 [SCOI2016]萌萌哒 题目描述 公式粘过来就乱了,还是去洛谷看题吧 分析 如果暴力解决的话就是使用并查集把位数相同的数位并在一起.比如区间[1,2]和区间[3,4]的数字完全相同,那么我们就把1和3并在一起,在把2和4并在一起,这样它们的祖先相同,就相当于把它们绑定在了一起,同一个祖先它们的数字必定相同.这样我们只要最后统计独立的并查集的个数就可以了.我们设个数为n,这样最终的方案数就是9\(\times10\)n-1,因为除了最高位,所有位的数字都可以取到0~9.但是这样…
又切一道紫题!!! 成功的(看了一吨题解之后),我A掉了第二道紫题. 好,我们仔细观察,发现这是一个排列组合问题. 有些限定条件,要相等的地方,我们就用并查集并起来.最后一查有多少个并查集,就有多少个位置可供自由选择. 所以答案就是10^(并查集数),去除前导0:*(9/10) 好,这样我们得到了一个O(mn)算法. 然后我们考虑优化:每个区间可能被合并多次.所以我们有两种选择:线段树/ST表. 考虑到这是ST表例题(???????),我们就来个ST表与并查集联动求解... 我们的ufs[i][…
正解:倍增+并查集 解题报告: 传送门! 首先不难想到暴力?就考虑把区间相等转化成对应点对相等,然后直接对应点连边,最后求有几个连通块就好辣 然后看下复杂度,修改是O(n2)查询是O(n),就比较容易想到能不能通过一些技巧变成都是O(nlogn)的,再结合数据范围发现nlogn的复杂度似乎是对的 然后发现我们用的并查集嘛,并查集就有可合并性昂,看到有可合并性的,就要想到几种算法——倍增/线段树/balabala 但是可以发现线段树是不欧克的,因为线段树一定要按二进制划分开来,就会导致两个子节点的…
2659: [Beijing wc2012]算不出的算式 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 668  Solved: 366[Submit][Status] Description 算不出的算式背景:              曾经有一个老掉牙的游戏放在我面前,我没有珍惜.直到这个游戏停产才追悔莫及.人世间最痛苦的事情莫过于此,如果上天给我一个再玩一次的机会,我一定要,通关!题目描述:       如果你真的很想玩这个游戏,那么就先看看…
那啥那啥 原本今天还是做(看)差分约束的,但是上不去Vjudge我只能来刷并查集了. %%%静萱大佬把那么多年的noip题都刷遍了,我只能刷水题,noip的题实在是太难了不会啊. 第一道:洛谷P2024食物链   虽然说我很不喜欢看别人代码,但是我认为这道题看代码最容易懂: //Serene #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include&…
P3295 [SCOI2016]萌萌哒 题面 题目描述 一个长度为 \(n\) 的大数,用 \(S_1S_2S_3 \cdots S_n\) 表示,其中 \(S_i\) 表示数的第 \(i\) 位, \(S_1\) 是数的最高位.告诉你一些限制条件,每个条件表示为四个数, \(l_1,r_1,l_2,r_2\) ,即两个长度相同的区间,表示子串 \(S_{l_1}S_{l_1+1}S_{l_1+2} \cdots S_{r_1}\) 与 \(S_{l_2}S_{l_2+1}S_{l_2+2} \…
看到这题,首先想到\(n^{2}\)的暴力,就是用并查集暴力合并两个相等的点.但由于这样会导致反复地访问同一个操作,显然是不能够的.于是我们可以联想这题的特殊性质,就是互相连变的点都是一段一段的区间.然后很自然地联想到线段树分解优化,坚定地想了一个半小时还多,然后很自然地挂了.天知道我是怎么把一个暴力的复杂度给生生算出 \(nlog^{2}m\) 的复杂度来的……(⊙﹏⊙) 线段树的区间分割并不是很灵活,而且完全没有改变暴力的本质.于是灰溜溜的去看题解,倍增?恍然大悟一般.是啊,分解区间我们还有…
题意: 给你一个\(n*n\)的矩阵A,其中有\(T\)个元素不为零.定义矩阵内元素\((x,y)\)的能量值 \(E[x][y]=\sum_{i=1}^{x}\sum_{j=1}^{y}[A[i][j]>0]\) 有\(m\)个询问\((x,y,d)\),每次询问是否存在二元组\((x',y')\)满足 \(x'=x\) 或 \(y'=y\) ,使得 \(E[x'][y']*A[x'][y']>=d\) 如果存在,则\(ans1++,ans2+=min(E[x'][y'])\).否则将 \(…
先说下暴力做法,如果[l1,r1]和[l2,r2]子串相等等价于两个区间内每个数对应相等.那么可以用并查集暴力维护,把对应相等的数的位置维护到同一个集合里去,最后答案其实就是把每个集合可以放的数个数乘起来就行了.注意:最高位不为0,如果有num个集合,则答案为9 * 10^(num – 1). 暴力维护复杂度为nm,每次询问枚举每个区间内的点,即n个点:查询集合个数复杂度为n,故总时间复杂度为nm + n ≍O(n²) 实际评测30分. #include<cstdio> #include<…