这道题有点意思,给出点(N,N),你在原点处向目标点走,每次只能向x和y两个方向走路,每次xy两个方向的步幅分别不能小于dx和dy,问走到终点的方案数,答案对1e9 + 7取模 这道题最直接的想法就是爆搜,但是看了眼数据,1e6,状态都开不下.然后就发现x和y的走路是独立的,所以可以分而治之,x和y分别处理,相乘即为到x,y的方案数,相乘即为源点到(x,y)的方案数.刚开始感觉像是个完全背包,但是自己写了个之后感觉算法假了,完全背包的统计不正确而且有遗漏和重复,还有不合法的状态也加了进来.然后自…
这道题看上去太像tarjan缩点了,我一上去本来想把所有的环给缩掉然后统计答案,后来发现哦,这道题不是这么回事儿. 给出黑边红边,一次性走至多只能走一次黑边,问有多少个点可以走到,并且让机器人停下来,就一次这也不是很难么,但是如果k >= 2就很难说了 爆搜就完事儿了,遇到黑边改一次再走,如果一个点走不通了就统计一下,记得入点要特判 #include <bits/stdc++.h> using namespace std; #define limit (20000 + 5)//防止溢出…
这两天刷了两道过去的原题,看看思维还是8太行. 这道题问给出两个字符串,要求只翻转一次,问有几种不同的方法使得a串变成b串 我一开始没看到只翻转一次,还以为是个计数 + 字符串dp大难题,心想当年的学长队伍真厉害啊能上去拿1血,结果仔细看了看发现是个水题,只转一次,那就记录最大相等的串,然后翻过来看相等不相等,然后向外向内拓展看有没有头 == 尾的情况就行了,水题一道,8多说 #include <bits/stdc++.h> using namespace std; #define limit…
题目链接 题意 \(A+B\)个球排成一行,左边\(A\)个为红球,右边\(B\)个为蓝球. 最开始可以选择两个数\(s,t\),每次操作可以取左起第\(1\)或\(s\)或\(t\)个球.问有多少种不同的取球序列. Sample Sample Input 1 3 3 Sample Output 1 20 Explanation There are 20 ways to give 3 red balls and 3 blue balls. It turns out that all of the…
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林数 \] 首先你要把这个组合计数肝出来,于是我去翻了一波<组合数学> 用斯特林数容斥原理推导那个式子可以直接出卷积形式,见下一篇,本篇是分治fft做法 组合计数 斯特林数 \(S(n,i)\)表示将n个不同元素划分成i个相同集合非空的方案数 Bell数 \(B(n)=\sum\limits_{i=…
0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. 该文于 2018.3.31 完成最后一次修改(若有出错的地方,之后也会进行维护).其主要内容限于数论和组合计数类数学相关问题.因为版面原因,其余数学方面的总结会以全新的博文呈现. 感谢你的造访. 0.1 记号说明 由于该文完成的间隔跨度太大,不同时期的内容的写法不严谨,甚至 $LaTeX$ 也有许多…
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林数 \] 首先你要把这个组合计数肝出来,于是我去翻了一波<组合数学> 分治fft做法见上一篇,本篇是容斥原理+fft做法 组合计数 斯特林数 \(S(n,i)\)表示将n个不同元素划分成i个相同集合非空的方案数 考虑集合不相同情况\(S'(n,i)=S(n,i)*i!\),我们用容斥原理推♂倒她…
[Luogu4921]情侣?给我烧了!(组合计数) 题面 洛谷 题解 很有意思的一道题目. 直接容斥?怎么样都要一个平方复杂度了. 既然是恰好\(k\)对,那么我们直接来做: 首先枚举\(k\)对人出来\(\displaystyle {n\choose k}\),然后枚\(k\)排座位出来\(\displaystyle {n\choose k}\),这些人间的顺序关系\(k!\),然后这些人可以左右交换\(2^{k}\). 好的,现在的问题转化为了剩下\(n-k\)对人,两两之间不能坐在一排,求…
这道题考察的是组合计数(用Burnside,当然也可以认为是Polya的变形,毕竟Polya是Burnside推导出来的). 这一类问题的本质是计算置换群(A,P)中不动点个数!(所谓不动点,是一个二元组(a,p),a∈A,p∈P ,使得p(a)=a,即a在置换p的作用后还是a). Polya定理其实就是告诉了我们一类问题的不动点数的计算方法. 对于Burnside定理的考察,我见过的有以下几种形式(但归根结底还是计算不动点数): 1.限制a(a∈A)的特点,本题即是如此(限制了各颜色个数,可以…
目录 WC集训DAY2笔记 组合计数 part.1 基础知识 组合恒等式 错排数 卡特兰数 斯特林数 伯努利数 贝尔数 调和级数 后记 补完了几天前写的东西 WC集训DAY2笔记 组合计数 part.1 今天开 幕 雷 击:PKUWC没过 UPD:THUWC也没过,听说群友380过了,也是高一,我378...,WC集训完可以愉快地vanyousee了(呜呜呜 UPD2:由于我在弱校,是高中rk1(黄神MLE了...),苟进了NOIWC 写笔记,就是记结论的意思 基础知识 组合恒等式 \[ 2^n…