Spark记录-Spark on mesos配置】的更多相关文章

1.安装mesos #用centos6的源yum安装 # rpm -Uvh http://repos.mesosphere.io/el/6/noarch/RPMS/mesosphere-el-repo-6-2.noarch.rpm # yum install mesos -y 注意:如果要运行Mesos而不将其安装到系统的默认路径中(例如,如果您缺乏安装它的管理权限),请传递 --prefix选项configure以告诉它在哪里安装.例如,通过 --prefix=/home/me/mesos.默…
### Spark SQL Running the SET -v command will show the entire list of the SQL configuration. #scala// spark is an existing SparkSession spark.sql("SET -v").show(numRows = 200, truncate = false)#java // spark is an existing SparkSession spark.sql…
参考http://spark.apache.org/docs/latest/configuration.html Spark提供三个位置来配置系统: Spark属性控制大多数应用程序参数,可以使用SparkConf对象或通过Java系统属性进行设置. 可以使用环境变量通过conf/spark-env.sh每个节点上的脚本来设置每台机器的设置,例如IP地址. 日志记录可以通过配置log4j.properties. Spark属性控制大多数应用程序设置,并为每个应用程序单独配置.这些属性可以直接在一…
Spark核心编程 Spark 核心是整个项目的基础.它提供了分布式任务调度,调度和基本的 I/O 功能.Spark 使用一种称为RDD(弹性分布式数据集)一个专门的基础数据结构,是整个机器分区数据的逻辑集合.RDDS可以用两种方法来创建的;一个是在外部存储系统引用的数据集,第二个是通过应用转换(如map, filter, reducer, join)在现有RDDS. RDD抽象通过语言集成API公开.这简化了编程的复杂性,因为应用程序的处理RDDS方式类似于操纵的本地集合数据. Spark S…
Spark性能优化的10大问题及其解决方案 问题1:reduce task数目不合适解决方式:需根据实际情况调节默认配置,调整方式是修改参数spark.default.parallelism.通常,reduce数目设置为core数目的2到3倍.数量太大,造成很多小任务,增加启动任务的开销:数目太少,任务运行缓慢. 问题2:shuffle磁盘IO时间长解决方式:设置spark.local.dir为多个磁盘,并设置磁盘为IO速度快的磁盘,通过增加IO来优化shuffle性能: 问题3:map|red…
Spark On YARN内存分配(转载) 说明 按照Spark应用程序中的driver分布方式不同,Spark on YARN有两种模式: yarn-client模式.yarn-cluster模式. 当在YARN上运行Spark作业,每个Spark executor作为一个YARN容器运行.Spark可以使得多个Tasks在同一个容器里面运行. 下图是yarn-cluster模式的作业执行图,图片来源于网络: 关于Spark On YARN相关的配置参数,请参考Spark配置参数.本文主要讨论…
Apache Spark是一个集群计算设计的快速计算.它是建立在Hadoop MapReduce之上,它扩展了 MapReduce 模式,有效地使用更多类型的计算,其中包括交互式查询和流处理.这是一个简单的Spark教程,介绍了Spark核心编程的基础知识. 工业公司广泛的使用 Hadoop 来分析他们的数据集.其原因是,Hadoop框架是基于简单的编程模型(MapReduce),并且它使用的计算解决方案,是可扩展的,柔性的,容错和低成本. 在这里,主要关心的是在查询之间等待时间和等待时间来运行…
在本地IDE里直接运行spark程序操作远程集群 一般运行spark作业的方式有两种: 本机调试,通过设置master为local模式运行spark作业,这种方式一般用于调试,不用连接远程集群. 集群运行.一般本机调试通过后会将作业打成jar包通过spark-submit提交运行.生产环境一般使用这种方式. 操作方法 1.设置master 两种方式: 在程序中设置 SparkConf conf = new SparkConf() .setAppName("helloworld") .s…
一.客户端进行操作 1.根据yarnConf来初始化yarnClient,并启动yarnClient2.创建客户端Application,并获取Application的ID,进一步判断集群中的资源是否满足executor和ApplicationMaster申请的资源,如果不满足则抛出IllegalArgumentException:3.设置资源.环境变量:其中包括了设置Application的Staging目录.准备本地资源(jar文件.log4j.properties).设置Applicati…
开发调优篇 原则一:避免创建重复的RDD 通常来说,我们在开发一个Spark作业时,首先是基于某个数据源(比如Hive表或HDFS文件)创建一个初始的RDD:接着对这个RDD执行某个算子操作,然后得到下一个RDD:以此类推,循环往复,直到计算出最终我们需要的结果.在这个过程中,多个RDD会通过不同的算子操作(比如map.reduce等)串起来,这个“RDD串”,就是RDD lineage,也就是“RDD的血缘关系链”. 我们在开发过程中要注意:对于同一份数据,只应该创建一个RDD,不能创建多个R…