MapReduce的工作机制】的更多相关文章

<Hadoop权威指南>中的MapReduce工作机制和Shuffle: 框架 Hadoop2.x引入了一种新的执行机制MapRedcue 2.这种新的机制建议在Yarn的系统上,目前用于执行的框架可以通过mapreduce.framework.name属性进行设置,值“local“表示本地作业运行器,“classic”值是经典的MapReduce框架(也称MapReduce1,它使用一个jobtracker和多个tasktracker),yarn表示新的框架. MR工作运行机制 Hadoop…
@ 目录 前言-MR概述 1.Hadoop MapReduce设计思想及优缺点 设计思想 优点: 缺点: 2. Hadoop MapReduce核心思想 3.MapReduce工作机制 剖析MapReduce运行机制 过程描述 第一阶段:作业提交(图1-4步) 第二阶段:作业初始化(图5-7步) 第三阶段:任务的分配(图8) 第四阶段:任务的执行(图9-11) 第五阶段:作业完成 Tips 知识点:进度和状态更新 4.MR各组成部分工作机制原理 4.1概览: 4.2 MapTask工作机制 4.…
Mapper “Map-Reduce”的思想就是“分而治之” Mapper负责“分”,即把复杂的任务分解为若干个“简单的任务”而执行 “简单的任务”有几个意思:1.数据或计算规模相对于原任务要大大缩小: 2.就近计算,即会被分配到存放了所需数据的节点进行计算. 3.这些小任务可以并行计算,彼此间没有相互依赖的关系 Reduce  对map阶段的结果进行汇总 Reducer的数目由mapred-site.xml配置文件里的项目mapred.reduce.tasks决定.缺省值为1,用户可以覆盖…
MapReduce几个小应用 上篇文章已经介绍了怎么去写一个简单的MR并且将其跑起来,学习一个东西动手还是很有必要的,接下来我们就举几个小demo来体验一下跑起来的快感. demo链接请参照附件:http://files.cnblogs.com/files/wangkeustc/demo.tar.gz 排序: 问题:将sort_input文件夹下的多个文件中的数据按照从小到大排序 设计思路:shuffle阶段会将发送到reduce的数据自动排序,所以我们这边只要保证在每个partiton中数字都…
摸索了将近一个月的hadoop , 在centos上配了一个伪分布式的环境,又折腾了一把hadoop eclipse plugin,最后终于实现了在windows上编写MapReduce程序,在centos上可以执行. 关于环境的配置,网上很多,不再废话. 仅以此系列的博客记录学习过程中的点点滴滴. ##############################传说中的分割线##################### 学习了WordCount程序,也照着网上的某些文章,实现了一些简单的MapRed…
MapReduce工作机制--Word Count实例(一) MapReduce的思想是分布式计算,也就是分而治之,并行计算提高速度. 编程思想 首先,要将数据抽象为键值对的形式,map函数输入键值对,处理后,产生新的键值对作为中间结果输出.接着,MapReduce框架自动将中间结果按键做聚合处理,发给reduce函数处理.最后,reduce函数以键和对应的值的集合作为输入,处理后,产生另一系列键值对作为最终输出.后面会结合实例介绍整个过程. 运行环境 先不考虑采用YARN的情况,那个时候Map…
1.MapTask工作机制 整个map阶段流程大体如上图所示.简单概述:input File通过getSplits被逻辑切分为多个split文件,通通过RecordReader(默认使用lineRecordReader)按行读取内容给map(用户自己实现的map方法),进行处理,数据被map处理结束之后交给OutputCollector收集器,对其结果key进行分区(默认使用hash分区),然后写入buffer,每个map task 都有一个内存缓冲区,存储着map的输出结果,当缓冲区快满的时候…
1,为什么需要hadoop 数据分析者面临的问题 数据日趋庞大,读写都出现性能瓶颈: 用户的应用和分析结果,对实时性和响应时间要求越来越高: 使用的模型越来越复杂,计算量指数级上升. 期待的解决方案 解决性能瓶颈,在可见的未来不会出现新瓶颈之前的技术可以平稳过渡,如SQL: 转移成本,如软硬件成本,开发成本,技能培养成本,维护成本 2,关系型数据库和MapReduce的比较: 传统关系型数据库 MapReduce 数据大小 GB PB 访问 交互式和批处理 批处理 更新 多次读写 一次写入多次读…
MapTask工作机制 并行度决定机制 1)问题引出 maptask的并行度决定map阶段的任务处理并发度,进而影响到整个job的处理速度.那么,mapTask并行任务是否越多越好呢? 2)MapTask并行度决定机制 一个job的map阶段MapTask并行度(个数),由客户端提交job时的切片个数决定. 切片(逻辑上的切分)大小默认等于128M,和block大小相等,原因是如果不按照block大小进行切分,可能会涉及到一些不同节点之间数据的传输. MapTask工作机制 总结 read阶段:…
目录 5 MapReduce工作机制(重点) 5.1 MapTask工作机制 5.2 ReduceTask工作机制 5.3 ReduceTask并行度决定机制 手动设置ReduceTask数量 测试ReduceTask多少合适 5 MapReduce工作机制(重点) 5.1 MapTask工作机制 Read阶段 主要是Job的提交流程 1.切片划分 2.提交给Yarn Job.split 切片信息 wc.jar 集群模式会提交,本地模式不会提交 Job.xml 配置信息 3.Yarn开启Node…