使用TensorFlow给花朵🌺分类】的更多相关文章

第一步:准备好需要的库 tensorflow-gpu  1.8.0 opencv-python     3.3.1 numpy skimage os pillow 第二步:准备数据集: 链接:https://pan.baidu.com/s/1Kbz_UaRhAfhlweFY28R8Sw 密码:iym3 本次使用了花朵分类的数据集,总共有5类 每类里面有不同形态的同一类花朵 在下载完数据集之后,我们对数据集进行预处理: from skimage import io, transform impor…
1.1. SVM介绍 1.2. 工作原理 1.2.1. 几何间隔和函数间隔 1.2.2. 最大化间隔 - 1.2.2.0.0.1. \(L( {x}^*)\)对$ {x}^*$求导为0 - 1.2.2.0.0.2. \(\alpha_{_i} g_{_i}( {x}^*)=0\),对于所有的\(i=1,.....,n\) 1.3. 软间隔 1.4. SMO算法 1.5. 核函数 1.6. 实例 1.1. SVM介绍 SVM(Support Vector Machines)--支持向量机是在所有知…
本节来介绍一下使用 RNN 的 LSTM 来做 MNIST 分类的方法,RNN 相比 CNN 来说,速度可能会慢,但可以节省更多的内存空间. 初始化 首先我们可以先初始化一些变量,如学习率.节点单元数.RNN 层数等: learning_rate = 1e- num_units = num_layer = input_size = time_step = total_steps = category_num = steps_per_validate = steps_per_test = batc…
读万卷书,不如行万里路.之前看了不少机器学习方面的书籍,但是实战很少.这次因为项目接触到tensorflow,用一个最简单的深层神经网络实现分类和回归任务. 首先说分类任务,分类任务的两个思路: 如果是多分类,输出层为计算出的预测值Z3(1,classes),可以利用softmax交叉熵损失函数,将Z3中的值转化为概率值,概率值最大的即为预测值. 在tensorflow中,多分类的损失函数为: cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_w…
在使用tensorflow分类MNIST数据集中,最容易遇到的问题是下载MNIST样本的问题. 一般是通过使用tensorflow内置的函数进行下载和加载, from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data", one_hot=True) 但是我使用时遇到了“urllib.error.URLError: <urlopen…
一.手写体分类 1. 数据集 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' os.environ["CUDA_VISIBLE_DEVICES"] = "0" config = tf.ConfigProto(allow_soft_placement…
这篇文章解释了底部链接的代码. 问题描述  如上图所示,有一些点位于单位正方形内,并做好了标记.要求找到一条线,作为分类的标准.这些点的数据在 inearly_separable_data.csv 文件内. 思路 最初的 SVM 可以形式化为如下: \[\begin{equation}\min_{\boldsymbol{\omega,b}}\frac{1}{2}\|\boldsymbol{\omega}\|^2\\s.t.\ y_i(\boldsymbol{\omega}^T\boldsymb…
前面基本上把 TensorFlow 的在图像处理上的基础知识介绍完了,下面我们就用 TensorFlow 来搭建一个分类 cifar10 的神经网络. 首先准备数据: cifar10 的数据集共有 6 万幅 32 * 32 大小的图片,分为 10 类,每类 6000 张,其中 5 万张用于训练, 1 万张用于测试.数据集被分成了5 个训练的 batches 和 1 个测试的 batch.每个 batch 里的图片都是随机排列的.官网上提供了三个版本的下载链接,分别是 Python 版本的,Mat…
昨天配置了tensorflow的gpu版本,今天开始简单的使用一下 主要是看了一下tensorflow的tutorial 里面的 IMDB 电影评论二分类这个教程 教程里面主要包括了一下几个内容:下载IMDB数据集,显示数据(将数组转换回评论文本),准备数据,建立模型(隐层设置,优化器和损失函数的配置),建立一个验证集,训练模型,评估模型,显示训练精度和损失图. 代码我已经完全上传到我的github中去了  https://github.com/OnesAlone/deepLearning/bl…
代码已上传到github:https://github.com/taishan1994/tensorflow-text-classification 往期精彩: 利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 利用RNN进行中文文本分类(数据集是复旦中文语料) 利用CNN进行中文文本分类(数据集是复旦中文语料) 利用transformer进行中文文本分类(数据集是复旦中文语料) 基于tensorflow的中文文本分类 数据集:复旦中文语料,包含20类数据集下载地址:h…