ST算法详解】的更多相关文章

ST算法详解 Coded by Jelly_Goat. All rights reserved. 这个主要是说ST表的. 首先了解一下ST表是什么. 先来一个老套的情景带入. (假设所有的题目都是1s,128ms) 有一天,蒟蒻Jelly_Goat用手(?) 给你出了一套\(n<=1000\)的数据,然后让你输出\(m<=1000\)次最小值. 你说了,那不就直接暴力吗? 然后,蒟蒻Jelly不服,又开始用C++出了\(n<=10000\),\(m<=10000\)的数据. 你可能…
ST算法: ID数组下标: 1   2   3   4   5   6   7   8   9    ID数组元素: 5   7   3   1   4   8   2   9   8 1.ST算法作用: 主要应用于求区间最值上,可以把所需要求的区间极大的压缩,并且查询的复杂度为O(1).比如我们要求一段区间上的最大值,就算是用DP的思想去做,用DP[i][j]表示从i到j区间的最大值,如果需要保存数据元素N比较多的时候,比如N=10000的时候,你开个二维数组肯定超内存,如果你用线段树做的,或…
Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:http://www.searchtb.com/2011/07/%E5%AD%97%E7%AC%A6%E4%B8%B2%E5%8C%B9%E9%85%8D%E9%82%A3%E4%BA%9B%E4%BA%8B%EF%BC%88%E4%B8%80%EF%BC%89.html C语言代码实现转自: htt…
转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简单的就是BF算法.BF算法是用两个游标分别指向母串S,模式串T,从开头向后面依次比较字符是否相等,如果相等继续同时向后滑动两个游标,不相等的话,T的游标回溯至开头,S的游标回溯至起初游标的下一位,这种算法原理非常简单,小学生都可以想的到. KMP算法是在BF算法的基础上加以改进的,它的特点是在遇到字…
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector machine,简称SVM.通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. (一)理解SVM基本原理 1,SVM的本质--分类 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些…
转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段.    我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句话说,给你两个字符串,你需要回答,B串是否是A串的子串(A串是否包含B串).比如,字符串A="I'm matrix67",字符串B="matrix",我们就说B是A的子串.…
原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和Margaret J.Corasick于1974年提出(与KMP算法同年)的一个经典的多模式匹配算法,可以保证对于给定的长度为n的文本,和模式集合P{p1,p2,...pm},在O(n)时间复杂度内,找到文本中的所有目标模式,而与模式集合的规模m无关.正如KMP算法在单模式匹配方面的突出贡献一样,AC算法对于…
KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句话说,给你两个字符串,你需要回答,B串是否是A串的子串(A串是否包含B串).比如,字符串A="I'm matrix67",字符串B="matrix",我们就说B是A的子串.你可以委婉地问你的MM:“假如你要向你喜欢的人表白的话,我的名字是你的告白语中的子串吗?”    …
EM算法详解 1 极大似然估计 假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成绩的分布 欲求在抽样X时,最优的μ和σ2参数估计,虽然模型的原型已知,但不同的参数对应着不同的学生成绩分布,其中一种最简单有效的参数估计方法就是估计的参数在目前抽样的数据上表现最好,即使得f(X|μ,σ2)的联合概率最大,这就是极大似然估计,常用L(μ,σ2|X)表示,满足公式(1)所示的关系.在实…
Tarjan算法详解 今天偶然发现了这个算法,看了好久,终于明白了一些表层的知识....在这里和大家分享一下... Tarjan算法是一个求解极大强联通子图的算法,相信这些东西大家都在网络上百度过了,这里不再赘述. 在这个算法中,定义了两个数组,一个是dfn数组,一个是low数组,相信大家在这里就晕了(我也晕了..),不过自己模拟了几次算法执行过程之后,就理解了这个算法的意思,如果大家不明白,也可以这样做 我觉得突破点主要在dfn数组和low数组的含义该如何诠释: dfn数组: 意思就是在dfs…