Louvain algorithm for community detection】的更多相关文章

主要理解Louvain 算法中对于模块度的定义:模块度是评估一个社区网络划分好坏的度量方法,它的物理含义是社区内节点的连边数与随机情况下的边数只差,它的取值范围是 [−1/2,1).可以简单地理解为社区内部所有边权重和减去与社区相连的边权重和. https://blog.csdn.net/qq_40438165/article/details/83374304 https://www.cnblogs.com/allanspark/p/4197980.html…
这是我最近看到的一篇论文,思路还是很清晰的,就是改进的LPA算法.改进的地方在两个方面: (1)结合K-shell算法计算量了节点重重要度NI(node importance),标签更新顺序则按照NI由大到小的顺序更新 得到ks值后,载计算一下节点邻居ks值和度值d的比值 (2)当出现次数最多的标签不止一个时,再计算一下标签重要度LI(label importance) 其实就是找到节点相同标签的那些令居计算一个合值,看着也不难啊 (3)最后这个算法使用的是异步传播 下面是我实现的代码 func…
最近在研究基于标签传播的社区分类,LabelRank算法基于标签传播和马尔科夫随机游走思路上改装的算法,引用率较高,打算将代码实现,便于加深理解. 这个算法和Label Propagation 算法不同的是计算复杂度较高,对每个标签都确定了概率,但是准确性比Label Propagation算法好. 一.概念 相关概念不再累述,详情见前两篇文章 二.算法思路 首先建立一个标签集合,C={1,2,……n},n是节点的数量.标签概率向量Pi(1*n),Pi(c)=节点i对标签c的概率估计,迭代过程中…
因为在我最近的科研中需要用到分布式的社区检测(也称为图聚类(graph clustering))算法,专门去查找了相关文献对其进行了学习.下面我们就以这篇论文IPDPS2018的文章[1]为例介绍并行社区检测算法. 关于基本的单机/串行社区检测算法,大家可以参考我的另一篇博客<图数据挖掘:社区检测算法(一)>(链接:https://www.cnblogs.com/orion-orion/p/15662253.html).总而言之,目前对于图的簇/社团划分,目前最广泛的测量方法是使用模块性(mo…
OUATTARA Sie, RUAN Xiaogang, Yan yan Institute of Artificial Intelligence and Robots, School of Electronic Information and Control Engineering Beijing University of Technology Beijing, China   ' = ∑b1' (i) 2 /(n1 × p1 )                      (15) i=1…
Canny是常用的边缘检测方法,其特点是试图将独立边的候选像素拼装成轮廓. John Canny于1986年提出Canny算子,它与Marr(LoG)边缘检测方法类似,也属于是先平滑后求导数的方法. John Canny研究了最优边缘检测方法所需的特性,给出了评价边缘检测性能优劣的三个指标: 1.好的信噪比,即将非边缘点判定为边缘点的概率要低,将边缘点判为非边缘点的概率要低: 2.高的定位性能,即检测出的边缘点要尽可能在实际边缘的中心: 3. 对单一边缘仅有唯一响应,即单个边缘产生多个响应的概率…
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in this task according to this metric; authors are willing to reveal the method White background = authors are willing to reveal the method Grey background…
在前面我们已经陆续介绍了许多特征检测算子,我们可以根据图像局部的自相关函数求得Harris角点,后面又提到了两种十分优秀的特征点以及他们的描述方法SIFT特征和SURF特征.SURF特征是为了提高运算效率对SIFT特征的一种近似,虽然在有些实验环境中已经达到了实时,但是我们实践工程应用中,特征点的提取与匹配只是整个应用算法中的一部分,所以我们对于特征点的提取必须有更高的要求,从这一点来看前面介绍的的那些特征点方法都不可取. 一 FAST算法原理 为了解决这个问题,Edward Rosten和To…
Traditionally, many classification problems try to solve the two or multi-class situation. The goal of the machine learning application is to distinguish test data between a number of classes, using training data. But what if you only have data of on…
Ruizhi Chen, Heidi Kuusniemi, Yuwei Chen, Ling Pei, Wei Chen, Jingbin Liu, Helena Leppäkoski, Jarmo Takala Currently, no single technology, system, or sensor can provide a positioning solution any time, anywhere. The key is to utilize multiple techno…