P1439 排列LCS问题】的更多相关文章

P1439 排列LCS问题 题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子序列的长度 输入输出样例 输入样例#1: 5 3 2 1 4 5 1 2 3 4 5 输出样例#1: 3 说明 [数据规模] 对于50%的数据,n≤1000 对于100%的数据,n≤100000 /* 看到10W的规模,大致可以断定此题应该用O(nlogn)的解法,朴素的…
P1439 排列LCS问题 56通过 220提交 题目提供者yeszy 标签二分动态规划 难度普及+/提高 提交该题 讨论 题解 记录 最新讨论 暂时没有讨论 题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子序列的长度 输入输出样例 输入样例#1: 5 3 2 1 4 5 1 2 3 4 5 输出样例#1: 3 说明 [数据规模] 对于50%的数…
洛谷1439 排列LCS问题 本题地址:http://www.luogu.org/problem/show?pid=1439 题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子序列的长度 输入输出样例 输入样例#1: 5 3 2 1 4 5 1 2 3 4 5 输出样例#1: 3 说明 [数据规模] 对于50%的数据,n≤1000 对于100%的数…
传送门 无重复元素的LCS问题 n2 做法不说了. nlogn 做法 —— 因为LCS问题求的是公共子序列,顺序不影响答案,影响答案的只是两个串的元素是否相同,所以可以交换元素位置. 首先简化一下问题,假设P1恰好为单调递增的1,2,3,...n,那么很显然答案就是P2的最长上升子序列的长度 问题是P1并非单调递增的,但我们可以假定它就是1,2,3,...,n. 也就是重新定义一下第一个串中 所有数 的顺序,定义a[x] = i,也就是 数x 是第 i 个,然后再重新弄一下第二串的顺序,最后求一…
传送门 比 P1439 排列LCS问题,难那么一点点,只不过有的元素不是两个串都有,还有数据范围变大,树状数组得打离散化. 不过如果用栈+二分的话还是一样的. ——代码 #include <cstdio> #include <algorithm> ; int n, m, size, ans; ], q[MAXN << ], p[MAXN << ]; inline int max(int x, int y) { return x > y ? x : y;…
例题 #A 传纸条(Accepted)    #B 乘积最大 (Unaccepted)    #C 石子合并 (Accepted)    #D 加分二叉树 (Unaccepted)    #E 没有上司的舞会(Unaccepted)    #F 选课 (Accepted)    #G 警卫安排 (Unaccepted)    #H 通向自由的钥匙 (Unaccepted) #I 导弹拦截 (Unaccepted)    #J [HAOI2010]最长公共子序列 (Unaccepted)    #…
Luogu P1439 令f[i][j]表示a的前i个元素与b的前j个元素的最长公共子序列 可以得到状态转移方程: if (a[i]==b[j]) dp[i][j]=dp[i-1][j-1]+1; dp[i][j]=max(dp[i][j],dp[i-1][j],dp[i][j-1]); 时空复杂度都为O(n^2^) 对于本题这种做法显然是无法接受的. 我们可以对这个题目进行转化.仔细看题,可以发现a,b两个序列都是1-n的排列. 那么,我们可以利用映射,将a中的数一一映射成为1,2,3,4,5…
P1439 [模板]最长公共子序列 题解 1.RE的暴力DP O(n2) 我们设dp[i][j]表示,S串的第i个前缀和T串的第j个前缀的最长公共子序列. ◦          分情况: ◦          如果S[i]==T[j],dp[i][j]=dp[i-1][j-1]+1; ◦          如果S[i]!=T[j],dp[i][j]=max(dp[i-1][j],dp[i][j-1]); ◦          最后答案就是dp[n][m] ◦          对于dp[i][j…
题目传送门 是一道十分经典的LCS问题 很容易想到  的一般算法:主题代码如下: for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++){ dp[i][j] = max (dp[i-1][j], dp[i][j-1]); if (a[i] == b[j]) dp[i][j] = max (dp[i][j], dp[i-1][j-1] + 1); } printf ("%d", dp[n][n]); 但往下看一眼数据…
题目:P1439 [模板]最长公共子序列 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 关于LCS问题,可以通过离散化转换为LIS问题,于是就可以使用STL二分的方法O(nlogn)解决LCS问题! 先将a数组与一个递增的数列1,2,3...n两两对应(t数组),再把b数组中每个数在a数组中的位置表示成c数组, 经过此番操作,a与b的公共子序列在c数组中就是呈递增状态的. 代码: #include <iostream> #include <algorithm>…