在求最优解时,前面很多地方都用梯度下降(Gradient Descent)的方法,但由于最优步长很难确定,可能会出现总是在最优解附近徘徊的情况,致使最优解的搜索过程很缓慢.牛顿法(Newton's Method)在最优解的搜索方面有了较大改进,它不仅利用了目标函数的一阶导数,还利用了搜索点处的二阶导数,使得搜索算法能更准确地指向最优解. 我们结合下图所示的一个实例来描述牛顿法的思想.假设我们想要求得参数\(\theta\),使得\(f(\theta)=0\).算法的描述如下: 随机猜测一个解\(…