(点击此处查看原题) 题意分析 已知 n , p , w, d ,求x , y, z的值 ,他们的关系为: x + y + z = n x * w + y * d = p 思维法 当 y < w 的时候,我们最多通过1e5次枚举确定答案 而当 y >= w 的时候,平局所得分为:y * d = (y-w)*d + w*d ,可以看作平局的局数为 y - w ,多出的w*d贡献给 (w*d)/w = d 局胜局,所以胜局为 x + d ,说明此时用x+y局胜局和平局得到的分数可以由 x + d…
吐槽:在比赛的时候,压根就没想到这题还可以对称: 题解:http://blog.csdn.net/danliwoo/article/details/52761839 比较详细: #include<iostream> #include<cstring> #include<cstdio> #include<cstdlib> #include<algorithm> #include<iomanip> #include<map>…
题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show&id=11672&courseid=0 题目大意: 给定任意一个N,(N<=109)求斐波那契—卢卡斯数列的前两项A和B.(先满足B最小再满足A最小,A<=B) 斐波那契—卢卡斯数列是斐波那契数列的推广,斐波那契数列f[0]=0,f[1]=1,斐波那契—卢卡斯数列f[0]=A,f[…
题目链接: http://codeforces.com/problemset/problem/710/D 题目大意: 两个等差数列a1x+b1和a2x+b2,求L到R区间内重叠的点有几个. 0 < a1, a2 ≤ 2·109,  - 2·109 ≤ b1, b2, L, R ≤ 2·109, L ≤ R). 题目思路: [数论][扩展欧几里得] 据题意可得同余方程组 x=b1(mod a1) 即 x=k1*a1+b1 x=b2(mod a2) x=k2*a2+b2 化简,k1*a1=k2*a2…
题目出自 Codeforces Round #126 (Div. 2) 的E. 题意大致如下:给定a,b,c,s,求三个非负整数x,y,z,满足0<=x<=y<=z,ax+by+cz=s,使得f(x,y,z)=|ax-by|+|by-cz|最小 思路:枚举z,得到一个方程ax+by=s-cz,用扩展欧几里得求出这个方程的一个解,然后三分通解的整系数,求出最小f值.至于为什么可以三分画画图就清楚了,两个绝对值函数叠加在一起最多只有三种状态(第一维表示临界点较小的那个绝对值函数):(降,降)…
扩展欧几里得是计算 ax + by = gcd(a,b) 的 x,y的整数解. 现在是ax + by + c = 0; 只要 -c 是 gcd(a,b) 的整数倍时有整数解,整数解是 x = x*(-c)/gcd(a,b) ; y = y*(-c)/gcd(a,b); #include <bits/stdc++.h> using namespace std; typedef long long ll; void gcd(ll a,ll b,ll& d,ll& x,ll&…
没想出来QAQ....QAQ....QAQ.... 对于一般情况,我们知道 ax+by=gcd(a,b)ax+by=gcd(a,b)ax+by=gcd(a,b) 时方程是一定有解的. 如果改成 ax+by=cax+by=cax+by=c 的话该方程有解当且仅当 ccc % gcd(a,b)==0gcd(a,b)==0gcd(a,b)==0 . 这个结论在大于2个个未知数的时候也是成立的,即对于: a1x1+a2x2+a3x3+......anxn=gcd(a1,a2,a3,...an)a_{1}…
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射线分别第一次经过这些点的时间. 解法一: (模拟) 射线不管怎么反射,都是和水平方向成45°角的,也就是说每一段射线上的点,横坐标和纵坐标的和或者差相等. 把每一个点放入它所对应的对角线里,然后模拟射线的路径就好. 代码: #include <iostream> #include <cstd…
Line Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Status Description A line on the plane is described by an equation Ax + By + C = 0. You are to find any point on this line, whose coordinates are integer numbers…
题目链接 题意:开始有a,b两点,之后可以按照a-b,a+b的方法生成[1,n]中没有的点,Yuwgna 为先手, Iaka后手.最后不能再生成点的一方输: (1 <= n <= 20000) T组数据T <= 500; 思路:由扩展欧几里得知道对于任意正整数,一定存在整数x,y使得 x*a + y*b = gcd(a,b);并且这个gcd是a,b组成的最小正整数:同时也知道了这也是两个点之间的最小距离: 之后直接求点的个数即可: ps:这道题我竟然想到了组合游戏..明显没有说双方都要用…