Tarjan的强联通分量】的更多相关文章

tarjan求强联通分量 变量含义说明: pre[i]:i点的被访问的时钟编号,被分配后保持不变 low[i]:i点能访问的最先的点的时钟编号,随子节点改变 scc_no[i]:i点所在的强联通分量的编号 dfs_clock:时钟序号,每访问一个新的点时都增长1 scc_cnt:强联通分量的编号 栈stk:每访问一个节点都压入栈中 他的步骤如下所述: 从根节点开始访问 为此新点的pre和low赋值现在的时间 遍历访问它的子节点 如果此点未被访问,则跳回第二步,然后跟新其low值 如果已访问但其未…
求强联通分量有很多种. <C++信息学奥赛一本通>  中讲过一个dfs求强联通分量的算法Kosdaraju,为了骗字数我就待会简单的说说.然而我们这篇文章的主体是Tarjan,所以我肯定说完之后再赞扬一下Tarjan大法好是不是 首先我们讲一下强联通分量 强联通分量指的是图的一个子图.在这个子图中,任意两个节点都可以互相到达.从定义上我们就可以看出是一个有向图来,因为任意一个无向图都符合该定义. 而它的标准定义是:有向图中任意两点都联通的最大子图. 咳咳,首先庆祝一下哈——本人博客的第一张图.…
提到Tarjan算法就不得不提一提Tarjan这位老人家 Robert Tarjan,计算机科学家,以LCA.强连通分量等算法闻名.他拥有丰富的商业工作经验,1985年开始任教于普林斯顿大学.Tarjan于1986年获得图灵奖.并于1994年当选为ACM院士. Tarjan其他奖项包括: 奈望林纳奖信息科学(1983第一个获奖者) 国家科学院的研究倡议奖 (1984) 巴黎Kanellakis奖-理论与实践( ACM1999) 帕斯卡奖章数学与计算机科学( 欧洲科学院2004) 加州理工学院杰出…
// https://www.cnblogs.com/stxy-ferryman/p/7779347.html ; struct EDGE { int to, nt; }e[N*N]; int head[N], tot; void addE(int u,int v) { e[tot].to=v; e[tot].nt=head[u]; head[u]=tot++; } int dfn[N], low[N], ind; int col[N], id; bool vis[N]; stack <int>…
题目大意: n个点 m条边的图 求大小大于1的强联通分量的个数 https://www.cnblogs.com/stxy-ferryman/p/7779347.html tarjan求完强联通分量并染色后 计算一下每种颜色的个数 就是每个强联通块的大小 #include <stdio.h> #include <cstring> #include <algorithm> #include <stack> using namespace std; ; *N];…
1.基础知识 在有向图G,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components).  下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树.搜索时,把当…
void tarjan(int u) { dfn[u]=low[u]=++dfs_clock; stack_push(u); for (int c=head[u];c;c=nxt[c]) { int v=to[c]; if (!dfn[v]) { tarjan(v); low[u]=min(low[u],low[v]); } else if (!scc[v]) low[u]=min(low[u],dfn[v]); } if (low[u]==dfn[u]) { scc_cnt++; int cu…
补坑ing... 好吧,这是第二天. 这一天我们主要围绕的就是一个人:tarjan......创造的强联通分量算法 对于这一天的内容我不按照顺序来讲,我们先讲一讲强联通分量,然后再讲割点与桥会便于理解 首先是强联通分量.. 所谓强联通分量即在一个集合中,所有的点都能互通,那么我们就称这一整个集合是一个强联通分量 那么我们怎么求一张图中有几个强联通分量呢? 首先我们要了解tarjan算法中最重要的2个数组(dfn数组:表示该点第一次出现在DFS序列中的时刻;low数组:表示该点所能追溯到的编号最小…
题目链接:http://poj.org/problem?id=1236 题意:给定一个表示n所学校网络连通关系的有向图.现要通过网络分发软件,规则是:若顶点u,v存在通路,发给u,则v可以通过网络从u接收到. 现要求解两个问题: TaskA: 最少分发给几个学校,就可以使所有的学校都能得到软件. TaskB: 最少增加几条边,就可以使得,发软件给任一学校,所有学校都可以收到. 思路:先进行强联通分量分解,然后缩点,并计算缩点后每个点的出度.入度.入度为0的点的总数为 a ,出度为0的点总数为 b…
定义:在一张有向图中,两个点可以相互到达,则称这两个点强连通:一张有向图上任意两个点可以相互到达,则称这张图为强连通图:非强连通图有极大的强连通子图,成为强联通分量. 如图,{1},{6}分别是一个强连通分量,{2,3,4,5}是一个强连通分量.而Tarjan算法可用于求解强连通分量. Tarjan算法: Tarjan算法是基于深度优先搜索的算法,每个强连通分量都是搜索树中的一个子树. 实现:dfn[u]表示到u节点时的标记(时间戳),low[u]表示u所能走到的节点中,点的最小的次序号(dfn…
就是看是否有一些点,从其他任何点出发都可到达 定理:有向无环图中唯一出度为0的点,一定可以由任何点出发均可达. 所以缩点,若出度为零的点(强联通分量)唯一,则答案为该强联通分量中点的度数. 若不唯一,答案为0,易证. Code(懒得Tarjan,用了两次DFS): #include<cstdio> #include<cstring> #include<vector> using namespace std; vector<int>order; ],first…
题目描述 ›对于一个有向图顶点的子集S,如果在S内任取两个顶点u和v,都能找到一条从u到v的路径,那么就称S是强连通的.如果在强连通的顶点集合S中加入其他任意顶点集合后,它都不再是强连通的,那么就称S是原图的一个强连通分量(SCC: Strongly Connected Component).任意有向图都可以分解成若干不相交的强连通分量,这就是强连通分量分解.把分解后的强连通分量缩成一个顶点,就得到了一个DAG(有向无环图). 现在,请求一个有向图中强连通分量的个数 输入 第一行两个数V,E,表…
Tarjan算法是一个基于dfs的搜索算法, 可以在O(N+M)的复杂度内求出图的割点.割边和强联通分量等信息. https://www.cnblogs.com/shadowland/p/5872257.html该算法的手动模拟详细 再Tarjan算法中,有如下定义. DFN[ i ] : 在DFS中该节点的时间戳 LOW[ i ] : 为i能追溯到最早的时间戳 在一个无向图中,如果有一个顶点,删除这个顶点以及这个顶点相关联的边以后,图的连通分量增多,就称这个点为割点. 割点伪代码: tarja…
  为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间,只说明可以通过这个通道由A房间到达B房间,但并不说明通过它可以由B房间到达A房间.Gardon需要请你写个程序确认一下是否任意两个房间都是相互连通的,即:对于任意的i和j,至少存在一条路径可以从房间i到房间j,也存在一条路径可以从房间j到房间i.  Input 输入包含多组数据,输入的第一行有两个数:N和M,接下来…
题目链接:https://vijos.org/p/1023 最近在练强联通分量,当然学的是tarjan算法 而这一道题虽然打着难度为3,且是tarjan算法的裸题出没在vijos里面 但其实并不是纯粹只需要tarjan求有几个强联通就可以过的(我以为这是所谓的裸题) 其实这题还需要对每一个强联通缩点,可能被所谓裸题误导的OIer们看不破这个 毕竟,这个样例数据也是坑啊,样例数据都可以说是无向图了,哪里还是什么有向图 所以样例数据不是万能的,但是没过样例数据是万万不能的 至于为什么缩点我们来想一想…
1.基础知识 所需结构:原图.反向图(若在原图中存在vi到vj有向边,在反向图中就变为vj到vi的有向边).标记数组(标记是否遍历过).一个栈(或记录顶点离开时间的数组).      算法描叙: :对原图进行深度优先遍历,记录每个顶点的离开时间. :选择具有最晚离开时间的顶点,对反向图进行深度优先遍历,并标记能够遍历到的顶点,这些顶点构成一个强连通分量. ,否则算法结束. 在dfs(bfs)中,一个结点的开始访问时间指的是遍历时首次遇到该结点的时间,而该结点的结束访问时间则指的是将其所有邻接结点…
题意: 怎么说呢...这种题目有点概括不来....还是到原题面上看好了... SOL: 求出强联通分量然后根据分量重构图,如果只有一个点没有出边那么就输出这个点中点的数目. 对就是这样. 哦还有论边双与强联通的tarjan的不同...边双要记录边...无向图的边有两条要判断是不是一条...还有什么不同呢...我也不造了...看起来很像很好写就对了... Code: /*================================================================…
题意:国王有n个儿子,现在这n个儿子要在n个女孩里选择自己喜欢的,有的儿子可能喜欢多个,最后国王的向导给出他一个匹配.匹配有n个数,代表某个儿子和哪个女孩可以结婚.已知这些条件,要你找出每个儿子可以和哪些女孩结婚 思路:求强联通分量.同时练习一下输入输出外挂可以减少时间 #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<cstdlib&g…
知识讲解: 在代码里我们是围绕 low 和 dfn 来进行DFS,所以我们务必明白 low 和 dfn 是干什么的? 有什么用,这样才能掌握他.   1.  dfn[]  遍历到这个点的时间 2.  low[]  遍历到这个所能连接到的最短时间,说明那个最短时间可以遍历带他,他也可以走到那个最短时间. 3.  我们每次出栈的点就是一个强联通分量(这里建议观看一下课件里面的Tarjan求强联通算法的模拟过程).   #include<cstdio> #include<cstdlib>…
题意:婚配问题,但是题目并不要求输出最大匹配值,而是让我们输出,一个王子可以与哪些王妃婚配而不影响最大匹配值. 解决办法:先求一次最大匹配,如果有两个已经匹配的王妃,喜欢她们两个的有两个或者以上相同的王子,那她们两个是可以交换的,对于前面的王子来说,他与这两个王妃中的任何一个匹配都不会影响最大匹配值,因为总有人把位置补上.那什么样的王妃才是可以交换的王妃呢?我们在这个王子已经匹配的王妃match[i]与他喜欢的王妃v连一条有向边,那样处在一个强联通分量的两个王妃就是可以相互交换的. 下面处理没有…
Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 1853    Accepted Submission(s): 608 Problem Description There are N bombs needing exploding. Each bomb has three attributes: exploding radius…
Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这 种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎.你的任务是求出有多少头 牛被所有的牛认为是受欢迎的. Input 第一行两个数N,M. 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可 能出现多个A,B) Output 一个数,即有多少头牛被所有的牛认为是受欢迎的. Sample Input 3…
大致题意给你有一个点数为n<=100的有向图. 求解两个子任务: 1:最少给多少个点信息,这些点的信息可以顺着有向边传遍全图. 2:最少要加多少条边,使得整个图强联通. 求强联通分量再缩点后得到一个有向无环图. 设其入度为0的点数为t1,出度为0的点数为t2 1的答案即为强联通缩点之后入度为0的点的数量t1. 2的答案即为max(t1,t2). 注意一个特殊情况:若缩点后只有一个点了(即原图便是强联通的)此时t1=1,t2=1但是第二个任务的答案应当是0. AC代码: #include<cst…
题目链接:http://poj.org/problem?id=2186 题目大意:    每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这 种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎.你的任务是求出有多少头 牛被所有的牛认为是受欢迎的. 解题思路: 假设有两头牛A和B都被其他所有牛认为是红人,那么显然,A被B认为是红人,B也被A认为是红人,即存在一个包含A.B两个顶点的圈,或者说,A.B同属于一个强…
题意 给定一个 n∗n 的矩阵 A,每个元素都非负判断是否存在一个整数 k 使得 A^k 的所有元素 >0 n≤2000(矩阵中[i][i]保证为1) 题解 考虑矩阵$A*A$的意义 ,设得到的矩阵为B矩阵中的一个元素$B[i][j]=\sum_{k=1}^{n}A[i][k]*A[k][j]$,$A[i][k]*A[k][j]$非负当且仅当$A[i][k]$和$A[k][j]$非负.这跟$弗洛伊德$差不多,枚举中间点,我们把$A[i][j]$非负理解为一个图中有一条$A$从$i$到$j$的边,…
[题意]: 有N个结点M条边的图,有Q次操作,每次操作在点x, y之间加一条边,加完E(x, y)后还有几个桥(割边),每次操作会累积,影响下一次操作. [思路]: 先用Tarjan求出一开始总的桥的数量,然后求边双联通分量并记录每个结点v所属的连通分量号c[v],之后进行缩点,将每个双联通分量作为都缩成一个新点,如果新点之间可以连边就连边 (能不能连边取决于原图,我就不多bb辽,XD),形成新图. 对于每次询问x, y,判断c[x]!=c[y],然后从c[x]和c[y]分别向上寻找父结点,找到…
题目:http://codeforces.com/contest/402/problem/E 题意:给你一个矩阵a,判断是否存在k,使得a^k这个矩阵全部元素都大于0 分析:把矩阵当作01矩阵,超过1的都当作1,那么a矩阵可表示一个有向图的走一次的连通性,则a^k表示有向图走K次的连通性.既然要求最后都没0,即走了K次后,每个点都能互通,这也说明这个图必然是只有一个强联通分量.于是判断k的存在有无,也就是判断a矩阵表示的有向图是不是只有一个强联通分量.…
题意: 一张无向图,求点集使其中任意两点可到达. SOL: 强联通分量中的点要么不选要么全都选,然后缩点DAG+DP 记录一下思路,不想写了...代码满天飞.…
题目描述 有n个同学(编号为1到n)正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学. 游戏开始时,每人都只知道自己的生日.之后每一轮中,所有人会同时将自己当前所知的生日信息告诉各自的信息传递对象(注意:可能有人可以从若干人那里获取信息,但是每人只会把信息告诉一个人,即自己的信息传递对象).当有人从别人口中得知自己的生日时,游戏结束.请问该游戏一共可以进行几轮? 输入输出格式 输入格式: 输入共2行. 第1行包含1个正整数n表示…
题目链接:http://poj.org/problem?id=2186 题目大意:有n头牛和m对关系, 每一对关系有两个数(a, b)代表a牛认为b牛是“受欢迎”的,且这种关系具有传递性, 如果a牛认为b牛“受欢迎”, b牛认为c牛“受欢迎”, 那么a牛也认为c牛“受欢迎”. 现在想知道有多少头牛受除他本身外其他所有牛的欢迎? 解题思路:如果有两头或者多头牛受除他本身外其他所有牛的欢迎, 那么在这两头或者多头牛之中, 任意一头牛也受两头或者多头牛中别的牛的欢迎, 即这两头或者多头牛同属于一个强联…