基本定理: 首先看一下核心代码: 核心代码 原理解析: 当初我看不懂这段代码,主要有这么几个问题: 1.定理里面不是一开始写了一个n*xxx么?为什么代码里没有*n? 2.ans不是*(prime[i]-1)么?为什么到了第二个while循环变成*prime[i]了? 3.定理里面不是要/pi么?为什么代码里没有/pi????????????? 公式化简 首先我们来分析一下整个程序的原理,如果把程序的原理搞明白了,这三个问题也就自然而然的解决了 这个程序的原理是基于唯一分解定理: 那么我们可以把…
素数表 const int maxN找[1,maxN)内的素数 int prime[int I]第I个素数 const int maxN=1e5+5; int prime[maxN]; bool mark[maxN]; void init_prime() { int cnt=0; for(int i=2;i<maxN;++i) { if(!mark[i])prime[++cnt]=i; for(int j=1;j<=cnt&&prime[j]*i<maxN;++j) {…
已知欧拉函数计算公式 初始公式:φ(n)=n*(1-1/p1)*(1-1/p2).....*(1-1/pm)   又 n=p1^a1*p2^a2*...*ps^as  欧拉函数是积性函数 那么:φ(n)=φ(p1^a1)* φ(p2^a2)........φ(pn^an). #include<cstdio> #include<ctime> #include<iostream> #include<cstdlib> #include<algorithm&g…
对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi(8) = 4),因为1,3,5,7均和8互质.   Input 输入一个数N.(2 <= N <= 10^9) Output 输出Phi(n). Input示例 8 Output示例 4解:简单说明一下基本情况,复杂情况可类推.若n=a^p*b^q(a,b为质数或1),则phi(n)=n-n/a-…
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1695 看了别人的方法才会做 参考博客http://blog.csdn.net/shiren_Bod/article/details/5787722 题意 a,b,c,d,k五个数,a与c可看做恒为1,求在a到b中选一个数x,c到d中选一个数y,使得gcd(x,y)等于k,求x和y有多少对. 首先可以想到选取的必是k的倍数,假设是x和y倍,则x和y一定是互质的在,那么就变成了求1到b/k和1到d/k的之…
Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6918   Accepted: 2234 Description Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now…
题目大意: 累加从1到n,任意两个数的gcd(i,j)(1=<i<n&&i<j<=n). 题解:假设a<b,如果gcd(a,b)=c.则gcd(a/c,b/c)=1.也就是说a/c和b/c互质,而与a/c互质的数一共有oula(a/c)个,也就是说这里的b/c一共有oula(a/c)种选择,同理,gcd(a,b)=c,a的选择就会有,oula(b/c)种. 所以 gcd(x,y)=1  ,枚举每一个x,然后在枚举x的k倍,答案就是ans[x*k]+=oula(…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 其实就是一个转化问题,求gcd(x, y) = k, 1 <= x, y <= n的对数等于求gcd(x, y) = 1, 1 <= x, y <= n/k的对数.那么接下来我们就只要枚举每个素数k=prime[i]了,然后用到欧拉函数就可以求出来了,Σ( 2*Σ(…
筛素数 void shai() { no[1]=true;no[0]=true; for(int i=2;i<=r;i++) { if(!no[i]) p[++p[0]]=i; int j=1,t=i*p[1]; while(j<=p[0] && t<=r) { no[t]=true; if(i%p[j]==0) //每一个数字都有最小质因子.这里往后的数都会被筛过的,break break; t=i*p[++j]; } } } O(n)筛欧拉函数 void find()…
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=n且Gcd(x,y)为素数的数对(x,y)有多少对 思路:先筛出n以内所有的素数顺便筛出欧拉函数,\(gcd(x,y)=k\)等价于\(gcd(\frac{x}{k},\frac{y}{k})=1\) 所以这个问题可以转化为求\(ans=\sum_{i=1}^{tot}\sum_{j=1}^{n/prime[i]}phi[j]\) ,tot为…