很多学习算法的性能都差不多,关键不是使用哪种学习算法,而是你能得到多少数据量和应用这些学习算法的技巧(如选择什么特征向量,如何选择正则化参数等) SVM在解决非线性问题上提供了强大的方法. logistic regression的h(x) 如果y=1,则我们希望h(x)接近于1,即希望θTx要远远大于0 logistic regression的cost function 当y=1时的cost function如左图,用粉红色的两段直线近似的代替cost function,记为cost1(z)(y…
Logistic模型和SVM都是用于二分类,现在大概说一下两者的区别 ① 寻找最优超平面的方法不同 形象点说,Logistic模型找的那个超平面,是尽量让所有点都远离它,而SVM寻找的那个超平面,是只让最靠近中间分割线的那些点尽量远离,即只用到那些"支持向量"的样本--所以叫"支持向量机". ② SVM可以处理非线性的情况 即,比Logistic更强大的是,SVM还可以处理非线性的情况.​ ③Logistic regression 和 SVM本质不同在于loss f…
本篇讲的是SVM与logistic regression的关系. (一) SVM算法概论 首先我们从头梳理一下SVM(一般情况下,SVM指的是soft-margin SVM)这个算法. 这个算法要实现的最优化目标是什么?我们知道这个目标必然与error measurement有关. 那么,在SVM中,何如衡量error的?也即:在SVM中ε具体代表着什么? SVM的目标是最小化上式.我们用来衡量error.这个式子是不是有点眼熟?我们在regularzation一篇中,最小化的目标也是如此形式.…
摘要: 本文是吴恩达 (Andrew Ng)老师<机器学习>课程,第二章<单变量线性回归>中第7课时<代价函数>的视频原文字幕.为本人在视频学习过程中逐字逐句记录下来以便日后查阅使用.现分享给大家.如有错误,欢迎大家批评指正,在此表示诚挚地感谢!同时希望对大家的学习能有所帮助. In this video (article), we'll define something called the cost function. This will let us figure…
摘要: 本文是吴恩达 (Andrew Ng)老师<机器学习>课程,第二章<单变量线性回归>中第8课时<代价函数的直观认识 - 1>的视频原文字幕.为本人在视频学习过程中逐字逐句记录下来以便日后查阅使用.现分享给大家.如有错误,欢迎大家批评指正,在此表示诚挚地感谢!同时希望对大家的学习能有所帮助. In the previous video (article), we gave the mathematical definition of the cost functio…
二分类:Logistic regression 多分类:Softmax分类函数 对于损失函数,我们求其最小值, 对于似然函数,我们求其最大值. Logistic是loss function,即: 在逻辑回归中,选择了 “对数似然损失函数”,L(Y,P(Y|X)) = -logP(Y|X). 对似然函数求最大值,其实就是对对数似然损失函数求最小值. Logistic regression, despite its name, is a linear model for classification…
Logistic regression is a method for classifying data into discrete outcomes. For example, we might use logistic regression to classify an email as spam or not spam. In this module, we introduce the notion of classification, the cost function for logi…
Handwritten digits recognition (0-9) Multi-class Logistic Regression 1. Vectorizing Logistic Regression (1) Vectorizing the cost function (2) Vectorizing the gradient (3) Vectorizing the regularized cost function (4) Vectorizing the regularized gradi…
一般的线性回归使用的cost function为: 但由于logistic function: 本身非凸函数(convex function), 如果直接使用线性回归的cost function的话,很难到达全局最优解. 相反,很容易陷入局部最优解然后就认为到达收敛条件了.因此,logistic regression中使用的cost function为: 其图像为一个碗(bowl shape function),碗的底部为(1,0).可以看出:当预测正确且非常自信时(h(x) = y), cos…
原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…