Kudu+Impala介绍】的更多相关文章

Kudu+Impala介绍 概述 Kudu和Impala均是Cloudera贡献给Apache基金会的顶级项目.Kudu作为底层存储,在支持高并发低延迟kv查询的同时,还保持良好的Scan性能,该特性使得其理论上能够同时兼顾OLTP类和OLAP类查询.Impala作为老牌的SQL解析引擎,其面对即席查询(Ad-Hoc Query)类请求的稳定性和速度在工业界得到过广泛的验证,Impala并没有自己的存储引擎,其负责解析SQL,并连接其底层的存储引擎.在发布之初Impala主要支持HDFS,Kud…
Impala介绍 Impala支持的文件格式 Impala可以对Hadoop中大多数格式的文件进行查询.它能通过create table和insert的方式将一部分格式的数据加载到table中,但值得注意的是,有一些格式的数据它是无法写入的(write to).对于Impala无法写入的数据格式,我们只能通过Hive建表,通过Hive进行数据的写入,然后使用Impala来对这些保存好的数据执行查询操作. 文件类型 文件格式 压缩编码 能否CREATE ? 能否INSERT ? Parquet 结…
随着用户使用天数的增加,不管你的业务是扩大还是缩减了,为什么你的大数据中心架构保持线性增长的趋势?很明显需要一个稳定的基本架构来保障你的业务线.当你的客户处在休眠期,或者你的业务处在淡季,你增加的计算资源就处在浪费阶段:相对应地,当你的业务在旺季期,或者每周一每个人对上周的数据进行查询分析,有多少次你忒想拥有额外的计算资源. 根据需求水平动态分配资源 VS 固定的资源分配方式,似乎不太好实现.幸运的是,借助于现今强大的开源技术,可以很轻松的实现你所愿.在这篇文章中,我将给出一个解决例子,基于流式…
阅读目录 序 介绍 安装 系列索引 本文版权归mephisto和博客园共有,欢迎转载,但须保留此段声明,并给出原文链接,谢谢合作. 文章是哥(mephisto)写的,SourceLink 序 上一篇,我们讲述了HBase的协处理器.   下面我们开始介绍Impala的介绍及安装. 介绍 一:定义 Impala是Cloudera公司主导开发的新型查询系统,它提供SQL语义,能查询存储在Hadoop的HDFS和HBase中的PB级大数据.和Hive相比,速度快了个数量级,具有非常好的交互式SQL执行…
一.简介 1.概述 Impala是Cloudera公司推出,提供对HDFS.Hbase数据的高性能.低延迟的交互式SQL查询功能. •基于Hive使用内存计算,兼顾数据仓库.具有实时.批处理.多并发等优点 impala使用hive的元数据, 完全在内存中计算 •是CDH平台首选的PB级大数据实时查询分析引擎 2.Impala的特点 impalak快的原因:1.2.3.6 1.基于内存进行计算,能够对PB级数据进行交互式实时查询.分析 2.无需转换为MR,直接读取HDFS及Hbase数据 ,从而大…
目录 impala的简单介绍 概述 优点 缺点 impala和Hive的关系 impala如何和CDH一起工作 impala的架构及查询计划 impala/hive/spark 对比 impala的安装部署 安装环境准备 下载impala的所有依赖包 挂载磁盘 上传压缩包并解压 制作本地yum源 开始安装impala 所有节点配置impala impala的简单介绍 概述 有两个关于impala介绍的网址: https://docs.cloudera.com/documentation/ente…
Kudu 是 Cloudera 开源的新型列式存储系统,是 Apache Hadoop 生态圈的新成员之一( incubating ),专门为了对快速变化的数据进行快速的分析,填补了以往 Hadoop 存储层的空缺.本文主要对 Kudu 的动机.背景,以及架构进行简单介绍. 背景——功能上的空白 Hadoop 生态系统有很多组件,每一个组件有不同的功能.在现实场景中,用户往往需要同时部署很多 Hadoop 工具来解决同一个问题,这种架构称为 混合架构 (hybrid architecture)…
背景 随着大数据时代的到来,Hadoop在过去几年以接近统治性的方式包揽的ETL和数据分析查询的工作,大家也无意间的想往大数据方向靠拢,即使每天数据也就几十.几百M也要放到Hadoop上作分析,只会适得其反,但是当面对真正的Big Data的时候,Hadoop就会暴露出它对于数据分析查询支持的弱点.甚至出现<MapReduce: 一个巨大的倒退>此类极端的吐槽,这也怪不得Hadoop,毕竟它的设计就是为了批处理,使用用MR的编程模型来实现SQL查询,性能肯定不如意.所以通常我也只是把Hive当…
本文来自:http://blog.csdn.net/yu616568/article/details/52431835 如有侵权 可立即删除 背景 随着大数据时代的到来,Hadoop在过去几年以接近统治性的方式包揽的ETL和数据分析查询的工作,大家也无意间的想往大数据方向靠拢,即使每天数据也就几十.几百M也要放到Hadoop上作分析,只会适得其反,但是当面对真正的Big Data的时候,Hadoop就会暴露出它对于数据分析查询支持的弱点.甚至出现<MapReduce: 一个巨大的倒退>此类极端…
[背景介绍] 国内某移动局点使用Impala组件处理电信业务详单,每天处理约100TB左右详单,详单表记录每天大于百亿级别,在使用impala过程中存在以下问题: 详单采用Parquet格式存储,数据表使用时间+MSISDN号码做分区,使用Impala查询,利用不上分区的查询场景,则查询性能比较差. 在使用Impala过程中,遇到很多性能问题(比如catalog元数据膨胀导致元数据同步慢等),并发查询性能差等. Impala属于MPP架构,只能做到百节点级,一般并发查询个数达到20左右时,整个系…